

FACULTY OF ENGINEERING

Papoulis-Gerchberg Algorithms for Limited Angle Tomography Using Data Consistency Conditions

Yixing Huang¹, Oliver Taubmann^{1,2,3}, Xiaolin Huang^{1,4}, Guenter Lauritsch³, Andreas Maier^{1,2}

¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany ²Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany

³Siemens Healthcare GmbH, Forchheim, Germany

⁴Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China

Introduction

Limited Angle Tomography

- C-arm angiographic systems: restrictions from other parts or obstacles
- Image reconstruction from insufficient angular range data
- Artifacts caused by missing data, typically streak artifacts

General Papoulis-Gerchberg (P-G) Algorithm

- Extrapolation of band-limited signals
- Given
 - $g_0(t)$: measured at $[-t_0, t_0]$ while 0 outside this segment
 - $M_a(t)$: a binary mask for the measured segment
 - w_c : the cut-off frequency of the original signal g(t)
 - L(w): a perfect low-pass filter which has a cut-off frequency of w_c
- The signal g(t) can be estimated iteratively:

$$g^{l}(t) = g_{0}(t) + (1 - M_{g}(t)) \cdot \mathcal{F}_{1}^{-1}(L(w) \cdot \mathcal{F}_{1}(g^{l-1}(t)))$$

- *l*: the iteration number
- \mathcal{F}_d is d-dimensional Fourier transform
- \mathcal{F}_d^{-1} : d-dimensional inverse Fourier transform
- $g^0(t) = g_0(t)$

Material and Methods

Conventional P-G Algorithm Using Object Support (OS)

- An object f(x, y) has a compact support S: a priori knowledge
- $F(w,\theta) = \mathcal{F}_2 f(x,y)$ and $2\pi f(x,y) = \mathcal{F}_2 F(w,\theta)$
- $F(w, \theta)$ is a band-limited signal with band S
- P-G algorithm using OS:

 $F^{l}(w,\theta) = F_{limited}(w,\theta) + (1 - M_{F}(w,\theta)) \cdot \boldsymbol{\mathcal{F}}_{2}^{-1}(L_{S}(x,y) \cdot \boldsymbol{\mathcal{F}}_{2}(F^{l-1}(w,\theta)))$

- $F_{\text{limited}}(w, \theta)$: measured frequency components
- $M_F(w,\theta)$: binary mask for the measured frequency components
- $L_S(x,y)$: a characteristic function of the support S

P-G Algorithm Using Double-Wedge (DW) Property

- The sinogram $p(s, \theta)$ is band-limited with a DW band:
 - $P(w,k) = \mathcal{F}_2 p(s,\theta)$
 - P(w,k) = 0 when $|k/w| > r_d$ (distance of the farthest point)
- P-G algorithm using DW:

 $p^{l}(s,\theta) = p_{\text{limited}}(s,\theta) + (1 - M_{p}(s,\theta)) \cdot \mathcal{F}_{2}^{-1}(L_{\text{DW}}(w,k) \cdot \mathcal{F}_{2}(p^{l-1}(s,\theta)))$

- $p_{\text{limited}}(s, \theta)$: the measured sinogram
- $M_p(s,\theta)$: binary mask for the measured frequency components
- $L_{\rm DW}(w,k)$: a characteristic function of the DW region

P-G Algorithm Using HLCC

- Helgason-Ludwig consistency conditions (HLCC)
 - $U_n(s)$: the Chebyshev polynomial of the second kind
 - *n*-th order moment curve: $a_n(\theta) = \int_{-\infty}^{\infty} p(s,\theta) U_n(s) ds$
 - Inverse transform: $p_{n_r}(s,\theta) = \frac{2}{\pi} \sum_{n=0}^{n_r} a_n(\theta) (W(s) \cdot U_n(s))$
 - $b_n(m) = \mathbf{F}_1 a_n(\theta)$
 - HLCC: $b_n(m) = 0$, when |m| > n or m + n is odd
 - The moment curves $a_n(\theta)$ are band-limited
- P-G algorithm using HLCC:

 $a_n^l(\theta) = a_{n,\text{limited}}(\theta) + (1 - M_{a_n}(\theta)) \cdot \mathcal{F}_1^{-1}(L_{\text{HLCC}}(n, m) \cdot \mathcal{F}_1(a_n^{l-1}(\theta)))$

- $a_{n,\text{limited}}(\theta)$: the measured moment curve
- $M_{a_n}(\theta)$: binary mask for the measured moment curve
- $L_{\mathrm{HLCC}}(n,m)$: a characteristic function of the HLCC

Material and Methods

P-G Algorithm Using HLCC and Soft-Thresholding (ST)

- The Fourier coefficients of moment curves are sparse
- P-G algorithm using HLCC and ST:

 $a_n^l(\theta) = a_{n,\text{limited}}(\theta) + (1 - M_{a_n}(\theta)) \cdot \mathcal{F}_1^{-1}(\mathcal{S}_{\tau}(L_{\text{HLCC}}(n, m)) \cdot \mathcal{F}_1(a_n^{l-1}(\theta))))$

• $S_{\tau}(v)$: a ST operator with threshold τ

Results and Discussion

- f_{limited} : FBP reconstruction using Ram-Lak filter
- f_{OS} : the OS of the ground truth phantom is assumed to be known
- $f_{\rm DW}$: $r_p = 94$ mm, the top point of the phantom
- $f_{\rm HLCC.ST}$: the threshold is set to $\tau = 0.5 \ (1 n/2500)$
- $f_{\rm HLCC,ST}$ has the best image quality: the boundary is well restored and streak artifacts inside are also mostly reduced

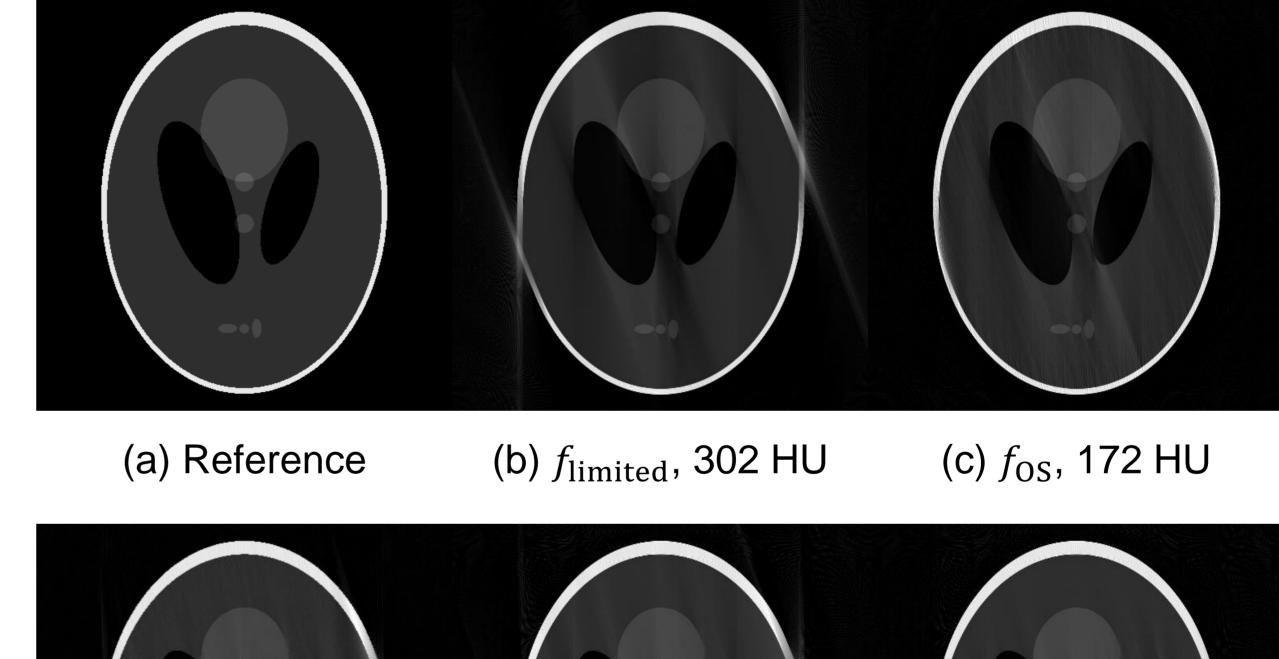


Fig. 1: Reconstructed images of the Shepp-Logan phantom using different P-G algorithms and their root-mean-square error, parallel-beam, 160° angular range.

Conclusion

- The P-G algorithm using HLCC and ST has the best performance
- It uses the sparsity information of the Fourier coefficients of moment curves

Disclaimer

The concepts and information presented in this paper are based on research and are not commercially available.

Contact

yixing.yh.huang@fau.de

