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Abstract—The Papoulis-Gerchberg (P-G) algorithm is widely
used for extrapolation of band-limited signals. It is applicable to
limited angle tomography as well since typical imaged objects in
computed tomography have a limited spatial extent, which means
that the Fourier transforms of the objects can be considered
band-limited signals. In computed tomography, some other band-
limitation properties have been discovered as well, which are
referred to as data consistency conditions. For example, the
Fourier transform of a parallel-beam sinogram has an empty
double-wedge region. The Chebyshev-Fourier transform of a
parallel-beam sinogram only has nonzero values inside a wedge
region and these values form a checkerboard pattern, which is
Helgason-Ludwig consistency condition. In this paper, we propose
two P-G algorithms to restore missing data in limited angle to-
mography using the above two consistency conditions. Numerical
experiments on the Shepp-Logan phantom demonstrate that they
can reduce streaks better than the conventional P-G algorithm.

I. INTRODUCTION

In computed tomography (CT), image reconstruction from
data acquired in an insufficient angular range is called limited
angle tomography [1]–[3]. It arises when the gantry rotation
of a CT system is restricted by other system parts or external
obstacles. Because of missing data, artifacts, typically in the
form of streaks, will occur in the reconstructed images.

Iterative algorithms with total variation are popular in lim-
ited angle tomography [4]–[7]. They incorporate sparsity at
the gradient domain of medical images into the reconstruction
and hence reduce streak artifacts. However, they are com-
putationally expensive. Recently, deep learning has obtained
impressive achivement for streak reduction in limited angle
tomography [8]–[10], but it depends heavily on the availability
and quality of training data.

Extrapolation/interpolation of the missing data is a common
way to deal with data insufficiency. The Papoulis-Gerchberg
(P-G) algorithm [11], [12] is well known for extrapolating
band-limited signals. In limited angle tomography, according
to the central slice theorem, some frequency components of
an imaged object are missing. Also, the imaged object has a
limited spatial extent, which means that the Fourier transform
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of the object can be considered a band-limited signal. There-
fore, to extrapolate the missing frequency components from
the measured ones, the P-G algorithm can be applied [13]–
[15]. However, it requires strong a priori knowledge in that
the object support should be known.

In computed tomography, many data consistency conditions
have been discovered. For example, the Fourier transform of
a parallel-beam sinogram has an empty double-wedge region
[16]. The Helgason-Ludwig consistency condition [17], [18]
states that Chebyshev-Fourier transform of a parallel-beam
sinogram only has nonzero values inside a wedge region
and these values form a checkerboard pattern. These con-
sistency conditions are also band-limitation properties of CT
data. Many experiments have demonstrated that consistency
conditions are beneficial in restoring missing data [19]–[22].
Therefore, in this paper, we propose two P-G algorithms to
restore missing data in limited angle tomography using the
above two consistency conditions.

II. METHODS

A. General P-G Algorithm

Given a measured segment g0(t) from a band-limited signal
g(t),

g0(t) =

{
g(t) |t| ≤ t0,
0 |t| > t0,

a characteristic function of the measurement interval [−t0, t0],

Mg(t) =

{
1 |t| ≤ t0,
0 |t| > t0,

and a perfect low-pass filter L(w),

L(w) =

{
1 |w| < wc,
0 |w| > wc,

where wc is the band limit of g(t), g(t) can be estimated by
the following algorithm [11], [12],

gl(t) = g0(t) + (1−Mg(t)) · F−11

(
L(w) · F1

(
gl−1(t)

))
,

where Fd and F−1d are the d-dimensional Fourier transform
and inverse Fourier transform operators, respectively, gl(t) is
an estimation of g(t) at the l-th iteration, and g0(t) = g0(t).

B. Conventional P-G Algorithm Using Object Support

We denote an imaged object by f(x). Typically the object
has a compact support in the spatial domain, denoted by S.
A characteristic function for the support S is defined as,

LS(x) =

{
1 x ∈ S,
0 otherwise.



The Fourier transform of the object f(x) is denoted by
F (w, θ) in polar coordinates, F (w, θ) = F2f(x). According
to the symmetry property of the Fourier transform, we have
F2F (w, θ) = 2πf(x). Therefore, F (w, θ) is a band-limited
function as, after applying a Fourier transform to it, its
components are nonzero only in S.

In computed tomography, the parallel-beam sinogram of the
object f(x) is denoted by,

p(s, θ) =

∫
x·θ=s

f(x)dx,

where θ = (cos θ, sin θ), θ ∈ [0, 2π) is the direction orthog-
onal to the X-rays, and s ∈ (−∞,∞) is the detector index.
The central slice theorem expresses that,

F1p(s, θ) = F (w, θ).

When the sinogram is measured for the whole angular range
[0, π), the object f can be reconstructed using the standard fil-
tered back-projection (FBP) reconstruction algorithms. How-
ever, in limited angle tomography, the sinogram is measured
only in a limited angular range, denoted by [0, θmax) where
θmax is the maximum scanned angle, θmax < π. In this case,
a double wedge region is missing in F , i. e.,

F limited(w, θ)|θmax≤θ<π,−∞<w<∞ = 0,

where F limited is the measured frequency components of f
in limited angle tomography. A characteristic function for the
measured region is defined as,

MF (w, θ) =

{
1 θ ∈ [0, θmax),
0 otherwise.

Restoring the complete F (w, θ) from F limit(w, θ) can thus
be considered as an extrapolation problem of a band-limited
function. Therefore, the P-G algorithm can be applied,

F l(w, θ) = F limited(w, θ) + (1−MF (w, θ))·
F−12 (LS(x) · F2F

l−1(w, θ)),
(1)

where F l(w, θ) is an estimation of F (w, θ) at the l-th iteration
and F 0(w, θ) = F limited. Note that F2 and F−12 can change
position here due to the symmetry property. This conventional
P-G algorithm is denoted by P-GOS.

C. P-G Algorithm Using Fourier Property Of Sinograms

The 2-D Fourier transform of a complete parallel-beam
sinogram is as follows,

P (w, k) = F2p(s, θ) =
1

2π

∫ 2π

0

∫ ∞
−∞

p(s, θ)e−i(ws+kθ)dsdθ.

A consistency condition in the sinogram’s Fourier space is
represented as follows [16],

P (w, k) ≈ 0 when
∣∣∣∣ kw
∣∣∣∣ > rp,

where rp is distance of the farthest point on the object to the
isocenter. It means that a double-wedge region of P (w, k) is

zero. Hence, p(s, θ) is a band-limited function. A characteristic
function for the double-wedge region is defined as,

LP (w, k) =

{
0
∣∣ k
w

∣∣ > rp,
1 otherwise.

In limited angle tomography, we denote the measured sino-
gram by plimited(s, θ), θ ∈ [0, θmax). According to p(s, θ) =
p(−s, θ + π), the limited angle sinogram is extended to a
2π angular range, denoted by p′limited(s, θ). A characteristic
function for the available part of the sinogram is defined as,

Mp(s, θ) =

{
1 θ ∈ [0, θmax) ∪ θ ∈ [π, π + θmax),
0 otherwise.

To extrapolate/interpolate the missing sinogram, the P-G al-
gorithm can be applied,

pl(s, θ) = p′limited(s, θ) + (1−Mp(s, θ))·
F−12

(
LP (w, k) · F2p

l−1(s, θ)
)
,

(2)

where pl(s, θ) is an estimation of p(s, θ) at the l-th iteration
and p0(s, θ) = p′limited. The proposed P-G algorithm using
the double-wedge property of sinograms’ frequency domain
is denoted by P-GDW. It was proposed for defect detector
gap compensation of emission CT in [23] and sparse-view
CT reconstruction in [19].

D. P-G Algorithm Using HLCC

We define the n-th order moment curve of a parallel-beam
sinogram p(s, θ) as,

an(θ) =

∫ ∞
−∞

p(s, θ)Tn(s)ds,

where Tn(s) = sn and n is the order of the monomial. The
Fourier transform of the moment curve is,

bn(m) =
1

2π

∫ 2π

0

an(θ)e
−imθdθ.

HLCC [17], [18] tells that,

bn(m) = 0, |m| > n or m+ n is odd. (3)

Therefore, the moment curves are band-limited functions. A
characteristic function for HLCC is defined as,

LHLCC(n,m) =

{
1 if |m| ≤ n and m+ n is even,
0 otherwise.

When Tn(s) is replaced by orthogonal polynomials, e.g.,
Chebyshev polynomials or Gegenbauer polynomials, p(s, θ)
can be conveniently restored from an(θ) while LHLCC(n,m)
remains the same. In this paper, we use the Chebyshev
polynomial of the second kind,

Un(s) =
sin ((n+ 1) arccos(s))√

1− s2
.

Un(s) is a family of orthogonal polynomials at domain [-1,
1] with the scalar weight W (s) = (1− s2)1/2, i.e.,∫ 1

−1
W (s) · Un(s) · Un′(s)ds =

{
0, n 6= n′

π/2, n = n′.



Note that here we normalize the detector index s to a range
of [-1, 1]. Thus, an approximate sinogram can be restored by
the inverse Chebyshev transform from the moment curves,

pnr
(s, θ) =

2

π

nr∑
n=0

an(θ) (W (s) · Un(s)) ,

where nr is the number of orders used.
In limited angle tomography, the moment curves an(θ) are

available only at the angular range of [0, θmax) and [π, π +
θmax). The available moment curve is denoted by an,limited(θ).
An characteristic function for the available parts is defined as,

Man(θ) =

{
1 θ ∈ [0, θmax) or θ ∈ [π, π + θmax),
0 otherwise.

To get pnr
(s, θ), we need to extrapolate/interpolate the missing

parts of an(θ), n = 0, 1, 2, . . . , nr. Hence, the P-G algorithm
can be applied,

aln(θ) = an,limited(θ) + (1−Man(θ)) ·
F−11

(
LHLCC(n,m) · F1a

l−1
n (θ)

)
,

(4)

where aln(θ) is an estimation of anθ at the l-th iteration. The
proposed P-G algorithm using HLCC is denoted by P-GHLCC.

Papoulis and Gerchberg have shown the convergence of
P-G algorithms in the noise-free case [11], [12]. When the
frequency band is known accurately, the missing signal can
be extrapolated exactly with infinite iterations. However, in
the presence of noise or discretization error, the missing signal
typically cannot be recovered exactly. In [21], we find that the
restoration of high order moment curves is severely ill-posed.
The observation that the Fourier coefficients of the moment
curves are sparse can be used to overcome the ill-posedness.
Therefore, we define a soft-thresholding operator Sτ ,

Sτ (v) =

 v − τ v > τ,
0 −τ ≤ v ≤ τ,
v + τ v < −τ,

where v is the value to be soft-thresholded and τ is a threshold.
Eq. (4) is then modified as follows,

aln(θ) = an,limited(θ) + (1−Man(θ))·
F−11

(
Sτ
(
LHLCC(n,m) · F1a

l−1
n (θ)

))
.

(5)

Here Sτ is applied to the imaginary and real Fourier coeffi-
cients element-wise. The proposed P-G algorithm using HLCC
and soft-thresholding is denoted by P-GHLCC,ST.

E. Simulation Experiments

To evaluate the performance of the proposed algorithms, ex-
periments on the standard high-contrast Shepp-Logan phantom
(Fig. 1) are conducted. The major and minor semi-axes of the
outer ellipse of the phantom are 94.2 mm and 70.6 mm, respec-
tively. The attenuation coefficients are converted to Hounsfield
scale between [-1000, 3000] HU. A limited angle sinogram is
computed analytically in a parallel-beam trajectory. The total
scanned angular range is 160◦ and the angular step is 0.5◦.
The number of the equal-space detector pixels is 1537 and
the detector element size is 0.2 mm. No noise is simulated but
discretization error exists. The images are reconstructed using

Fig. 1. The Shepp-Logan phantom, window: [-1000, 3400] HU.

FBP with the Ram-Lak filter. The size of the reconstructed
images is 512× 512 with an isotropic pixel size of 0.4 mm.

For P-GOS, we assume that the support of the ground
truth Shepp-Logan phantom is exactly known. For P-GDW,
we choose rp = 94mm, which is the top point of the
phantom and can be accurately obtained from the limited angle
reconstruction result using FBP. For P-GHLCC and P-GHLCC,ST,
the number of used orders nr is set to 2414. Empirically, the
threshold τ is set to τ = 0.5 · (1− n/2500) for n-th moment
curve. For all three algorithms, 1000 iterations are performed.

III. RESULTS AND DISCUSSION

The images reconstructed from different algorithms and
their absolute difference w. r. t. the image reconstructed from
the full data are displayed in Fig. 2. The image reconstructed
from the limited angle sinogram using FBP, denoted by
f limited, is shown in Fig. 2(a). It suffers from streak artifacts.
Especially, the outer boundary is severely distorted on the left
and right sides. The image reconstructed from P-GOS, denoted
by fOS, is shown in Fig. 2(b). The streaks outside the boundary
are totally removed, since strong prior knowledge of the
ground truth object support is applied. However, streaks inside
the support remain. The image reconstructed from P-GDW,
denoted by fDW, is shown in Fig. 2(c). Most streaks outside
the boundary are reduced, although the boundary is still a little
distorted. Its absolute difference image diffDW displayed in
Fig. 2(h) demonstrates that the streaks inside the boundary are
also reduced. Figs. 2(d) and (e) are images reconstructed from
P-GHLCC and P-GHLCC,ST, denoted by fHLCC and fHLCC,ST
respectively. Most streaks remain in fHLCC (Fig. 2(d)) since
only low order moment curves are restored. On the contrary,
most streaks at the boundary in fHLCC,ST (Fig. 2(e)) are
reduced and thus the boundary is reconstructed very well.
Streaks inside the boundary of fHLCC,ST are also reduced,
although still some small streaks remain. The root-mean-
square errors (RMSEs) of images reconstructed from different
algorithm indicate that P-GHLCC,ST has the best performance
with the lowest RMSE of 75 HU.

IV. CONCLUSION

In this paper, we propose two new P-G algorithms based
on consistency conditions, P-GDW and P-GHLCC/P-GHLCC,ST.
P-GDW uses the band-limitation property of sinograms, i. e.,
that the 2-D Fourier transform of a sinogram has a double-
wedge zero region. P-GHLCC,ST uses the band-limitation prop-
erty of moment curves according to HLCC. The conventional



(a) f limited (b) fOS (c) fDW (d) fHLCC (e) fHLCC,ST

(f) difflimited (g) diffOS (h) diffDW (i) diffHLCC (j) diffHLCC,ST

Fig. 2. Reconstructions of the Shepp-Logan phantom using different algorithms and their absolute difference w. r. t. the full data reconstruction. The root-mean
square errors for f limited, fOS, fDW, fHLCC, and fHLCC,ST are 302 HU, 172 HU, 150 HU, 214 HU, and 75 HU, respectively. Window: [-1000, 3400] HU and
[-1000, 1000] HU for the top and bottom images, respectively.

P-G algorithm P-GOS requires strong a priori knowledge,
the exact object support. In contrast, P-GDW only needs
the distance of the farthest point, which can be accurately
estimated from a limited angle reconstruction. It reduces small
streaks inside the boundary better than P-GOS. However, it is
unable to reconstruct the boundary well. P-GHLCC only is not
sufficient to reduce streaks due to the ill-posedness of high
order moment curve extrapolation/interpolation. P-GHLCC,ST
takes the advantage of the sparsity of the Fourier coefficients
of the moment curves. It performs the best on streak reduction
among the proposed algorithms.

Disclaimer: The concepts and information presented in this
paper are based on research and are not commercially avail-
able.
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