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Abstract—This paper addresses streak reduction in limited an-
gle tomography. Although the iterative reweighted total variation
(wTV) algorithm reduces small streaks well, it is rather inept at
eliminating large ones since total variation (TV) regularization is
scale-dependent and may regard these streaks as homogeneous
areas. Hence, the main purpose of this paper is to reduce streak
artifacts at various scales. We propose the scale-space anisotropic
total variation (ssaTV) algorithm, which is derived from wTV, in
two different implementations. The first implementation (ssaTV-
1) utilizes an anisotropic gradient-like operator which uses 2 - s
neighboring pixels along the streaks’ normal direction at each
scale s. The second implementation (ssaTV-2) makes use of
anisotropic down-sampling and up-sampling operations, similarly
oriented along the streaks’ normal direction, to apply TV regular-
ization at various scales. Experiments on numerical and clinical
data demonstrate that both ssaTV algorithms reduce streak
artifacts more effectively and efficiently than wTYV, particularly
when using multiple scales.

Index Terms—limited angle tomography, streak artifacts, total
variation, anisotropic, scale-space.

I. INTRODUCTION

ONE-BEAM computed tomography (CBCT) is a widely

used medical imaging technology. CBCT reconstructs a
volume of data which provides information about the anatom-
ical morphology of the patient. In order to get a complete set
of projection data for reconstruction, currently most CBCT
systems need the X-ray source and detector to rotate around
200°, which is called a short scan. In practical applications,
CBCT systems, particularly angiographic C-arm devices, are
used to acquire 3-D images for planning, guiding, and mon-
itoring of interventional operations. In these situations, the
gantry rotation might be restricted by other system parts or
external obstacles. In this case, only limited angle data are
acquired. In this paper, a single continuous limited angle scan
is considered. Image reconstruction from data acquired in an
insufficient angular range is called limited angle tomography.
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(a) Custom phantom (b) FBP reconstruction

(c) Limited angle scan

Fig. 1. Demonstration of artifacts in limited angle tomography: a custom
phantom (a) and its filtered back-projection (FBP) reconstruction (b) from
160° limited angle sinogram acquired in a limited angle scan (c) in fan-beam
geometry, window: [-300, 200] HU.

Due to data insufficiency, artifacts, typically in the form of
streaks, will occur in the reconstructed images (Fig. 1(b)).
They cause boundary distortion, intensity leakage, and edge
blurry. The characterization of streak artifacts can be found
in [1], [2]. Generally, streak artifacts appear at boundary
areas, which is object dependent. However, the orientations
of streak artifacts are highly dependent on the scan trajectory,
mostly at the missing angular ranges. For example, when the
scan is from 10° — 170° shown in Fig. 1, most streaks are
approximately oriented at the horizontal direction, especially
for the low frequency streaks (large inhomogeneities) between
circular areas. These streak artifacts degrade the image quality
and may lead to misinterpretation of the images. Therefore,
streak reduction in limited angle tomography has important
clinical value.

A lot of effort has already gone into suppressing streak
artifacts in limited angle tomography [3], [4]. One approach
is to extrapolate/interpolate the missing data in projection
domain [5]-[8]. Another approach is compressed sensing,
which has attracted tremendous attention since it requires
only relatively little data to obtain a good reconstruction
result by exploiting sparsity [9], [10]. In particular, iterative
reconstruction algorithms regularized by total variation (TV)
were demonstrated to be effective in streak reduction in limited
angle tomography [11], [12].

However, images processed by total-variation-based meth-
ods typically exhibit an undesirable staircasing effect which
transforms gray value slopes into stair-like shapes and causes
edges to be blurred and fine structures to be removed [13],
[14]. In 2008, Candés et al. [15] proposed the iterative
reweighted TV (wTV) algorithm to enhance sparsity in the
gradient domain more effectively, which reduces the staircas-
ing effect intrinsically. The wTV algorithm has been widely
applied to different fields of image processing and its ad-
vantages are well-understood [16]-[19]. Therefore, in this



paper, we adapt wTV for use in limited angle reconstruction.
Problems optimized with wTV are generally nonconvex [20].
The convergence of wTV algorithms has been proved by
[20], [21]. However, the converged stationary point might still
be a local minimum instead of the global one [20], [21].
In limited angle tomography, the reconstruction problem is
severely ill-posed [22]. Therefore, very likely only a local
optimum is obtained. TV regularization generally is scale-
dependent [23]. It typically uses two neighboring pixels to
compute the derivative in each direction and the resulting
gradient operators are hardly able to detect variations on larger
scales. Specifically, in limited angle tomography large streaks
with low frequency and a high intensity difference may be
regarded as proper structures by the wTV algorithm.

In many imaging processing tasks, scale-space optimization
approaches are widely used to avoid local minima and ac-
celerate the convergence speed [24], [25]. To jointly reduce
streaks of various scales more effectively, we perform the
regularization in scale space since each individual scale is most
sensitive to artifacts of a specific spatial extent [26]-[28].

As mentioned above, in limited angle tomography, shape
and orientation of streak artifacts are closely related to the
missing angular range in the acquisition. Making use of such
prior knowledge, anisotropic TV (aTV) methods are designed
[29]-[34]. For instance, Chen et al. [31] assigned differ-
ent weighting factors to different directions, which resulted
in better performance on edge recovery and streak artifact
reduction than isotropic TV. Wang et al. [34] proposed to
combine wTV with another form of aTV to prevent blurring
of certain orientation edges. This approach works well on
simple tubular structures, but appears to struggle with more
complex objects. In our paper, we incorporate anisotropy into
the wTV algorithm at each scale and propose two different
aTV implementations. The first one utilizes an anisotropic
gradient-like operator which uses 2 - s neighboring pixels at
each scale s to calculate the gradient along the streaks’ normal
direction [32]. The second one makes use of anisotropic
down-sampling and up-sampling operations, similarly oriented
along the streaks’ normal direction [33], [35]. To validate
the advantages of our proposed scale-space anisotropic total
variation (ssaTV) algorithms, experiments on both numerical
and clinical data are performed.

II. MATERIALS AND METHODS
A. Baseline: Iterative reweighted total variation (WTV)

A scheme combining the simultaneous algebraic reconstruc-
tion technique (SART) with TV minimization [10]-[12], [31],
namely SART-TV, is often utilized for TV-regularized iterative
reconstructions. It alternatively minimizes a data fidelity term
||Af — p||3 and a TV term || f||tv, where f consists of the
voxels of the desired image stacked in a column vector, A is
the system matrix and p is the vector of acquired projection
data. The data fidelity term is optimized by the following
SART update [36],
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where j is the pixel index of f, i is the projection ray index
of p, A;; is the element of A at the i-th row and the j-
th column, n is the iteration number, S is the X-ray source
rotation angle, IV is the total number of pixels in f, A is a
relaxation parameter, and Py stands for the set of projection
rays when the X-ray source is at position /.

We define the regular non-weighted TV term || f||v as,
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where z, y and z are the spatial indices of a voxel into the

3-D grid, || - || is the Euclidean norm and D is a conventional
isotropic gradient operator,
D-fx,y,z = (Dl’fa:,y,zv Dy.fa;y,zv szz’%z) I (3)

with D, D, and D, being discrete derivative operators along
the coordinate axes,
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For the wTV algorithm, the TV term || f||rv is extended to
|| fllwtv by adding a weighting vector. According to Candés
et al. [15],
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where f(") is the image at the n-th iteration, w™) is the
weight vector for the n-th iteration which is computed from the
previous iteration, and € is a small positive number added to
avoid division by zero. Candes et al. recommend that e should
be slightly smaller than the expected nonzero magnitude of
Df..,..- For simplicity, the iteration index n is kept for the
weight vector only and omitted for other variables.

A flow chart summarizing our implementation of wTV for
limited angle reconstruction is shown in Fig. 2. It utilizes
the SART-TV scheme similar to [11]. The main loop iterates
at most N times. Each iteration contains a SART update
followed by a nonnegativity constraint [10] to increase data
fidelity and a wTV regularization step using a gradient decent
method to minimize the wTV term of the current image. The
regularization step, shown within a dashed outline, is separated
from the SART update so that it can be replaced by other
TV regularization variants in the next sections. The partial
derivative of ||£™||wrv w.r.t. each image voxel is denoted
by g,
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Fig. 2. Our wTV algorithm iterates SART updates and wTV regularization steps alternatively N times in the main loop and repeats the gradient descent

process M times in the inner loop.

where w(™ is kept as constant at the n-th iteration. The partial
derivative g is needed to perform a gradient descent iteration.
g is normalized to get the direction for gradient descent. A
backtracking line search [37] is applied to get the step size
t. Afterwards the image is updated as f < f —t-g. This
gradient descent process is repeated M times. After that, w (™)
is updated.

B. Scale-space anisotropic total variation (ssaTV)

The effect of conventional TV regularization, including
wTYV, is limited in spatial scale since only two neighboring
pixels are used to compute the derivative in each direction
and the resulting gradient operators are hardly able to detect
variations on larger scales. This is why small streaks are
reduced effectively by wTV while large streaks remain. To
reduce large streaks effectively and efficiently, we apply wTV
regularization at various spatial scales along the streaks’ nor-
mal direction using a scale-space approach. For this purpose,
two scale-space anisotropic total variation (ssaTV) algorithms
are proposed.

1) The first ssaTV algorithm (ssaTV-1): In contrast to wTV,
ssaTV-1 employs an anisotropic gradient operator. Instead of
using two neighboring pixels to define the derivative in each
direction, we propose to use more pixels along the normal
direction of most streaks. Specifically, 2 - s neighboring pixels
are used at a scale s. In practice, streaks can be aligned with
a coordinate axis, e.g. the X-axis, if we define a coordinate
system with the Y-axis as the symmetry axis of the scan
angular range, e.g. 10° - 170° (Fig. 1(c)). In the given
example, most streaks occur in the horizontal direction, which
causes more variations along Y than along X. Therefore,
we introduce a modified derivative-like operator along Y
direction, denoted by ﬁy, to enhance TV regularization at this
direction. ﬁy f is generally represented as,
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where a is a derivative-like kernel with 2 - s elements. This
results in an anisotropic gradient operator D at scale s, denoted
by D,

bfm7y,z = (Dxfm,y,zv byf:r:,y,z7 szm7y7z) I (8)

where D, f and D, f are identical to those in Eqn. (4). For
ssaTV-1, the isotropic gradient operator D in Eqn. (5) is
replaced by the anisotropic one D in Eqn. (8).

The next step is to design the kernel a. The purpose of Dy
is to detect variations at coarse scales. Coarse scale structures
are typically attained by low-pass filtering,

L

Z hi—;- fw7y+j7Z’ 9)

j=—L

where h is a 1-D low-pass kernel with length 2 - L + 1 and
f’ is the smoothed image computed as the convolution of f
and h along Y direction. The Gaussian kernel is the most
widely used low-pass filter for scale-space approaches since it
satisfies adequate scale-space conditions [38], [39]. Therefore,
we choose the Gaussian kernel for h. In this work, we have
L = s when h is a Gaussian kernel. The coarse scale variations
are computed by applying a differentiation operator. Hence, a
can be constructed by convolving a derivative kernel b with a
low-pass kernel h,

a=h=xb. (10)

We choose b = [1,—1], which results in the forward-
difference, and hence f)yfm’y’z = f'uy.— F'2y-1,. Note
that the magnitude of @y J,y,- has an influence on the amount
of TV regularization in Y direction. A small magnitude leads
to slow convergence of the algorithm. Therefore, the combined
kernel a is also scaled to have an /; norm of 2, which equals
the {; norm of the regular derivative kernel b = [1,—1]
(Eqn. (4)).

In analogy to Eqn. (6), the partial derivative of ||f]||wrv
w.r.t. voxel f then turns out to be,

z,Y,z

s—1 N

g _ gz: w(n) ) Asti - Dyfx,y—i,z
T,y,z = Y—1, =

i=—s T ||Dfa:,yfz,z”

I 'w(n) ] Dm.f:c,y,z + Dz.fgc,y,z - w(nﬁl ) Dxfz+1,y,z
T,Y,2 ~ z+1,y,2z ~
Y ||D.fa:,y,z|| Y ||D.f:1:+1,y,z||

() sz:r:}y,erl

Way,241 " 115 :
o ||D-fw,y,z+1||

(1)

The general framework of ssaTV-1 is shown in Fig. 3. For
each scale s, the ssaTV minimization box is the same as
the wTV regularization box in Fig. 2 but uses the modified
derivative-like operator f?y f. We choose the scales s €
{2lmax=1 lmax=2_ 21 1} with decreasing powers of
two like classic Gaussian pyramids [26] where [;,.x iS the
maximum level used. The standard deviation of the Gaussian
kernel at each scale s is chosen as o3 = m [26]. Note that
for s = 1 a regular wTV regularization step is used.



,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ssaTV minimization
scale s = 2fmax’!

ssaTV minimization
scale s = 2fmax?

ssaTV minimization
scale s =2

ssaTV minimization
scale s = 1

ssaTV
regularization

| Initialization T‘ SART |—>{Nonnegetivity |—

N

Fig. 3. The ssaTV algorithm uses multiple scales during regularization. For ssaTV-1, the ssaTV minimization box is the same as the wTV regularization box

in Fig. 2 but uses the modified derivative-like operator D, f.
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Fig. 4. The ssaTV-2 minimization substep down-samples the image f to calculate the wTV gradient g, and step size ¢4, then it uses ¢4 and the up-sampled

g to update the original image f.

2) The second ssaTV algorithm (ssaTV-2): In ssaTV-1, we
increase the scale of the TV regularization with an anisotropic
gradient operator while the scales of the streak artifacts remain
the same. As an alternative, in ssaTV-2, the gradient operator
is kept unchanged while the size of the image, and thus also
of the streak artifacts, is reduced by down-sampling.

Like ssaTV-1, the down-sampling operation is also applied
anisotropically in Y direction only. It is defined as the sub-
sampling of the low-pass-filtered image,

(fd)m7y’7z = f/:r,s~y’,z7

where f’ is defined in Eqn. (9), f, is the down-sampled
image, and y’ is the Y-index of f,.

On the down-sampled image, the partial derivative of
|[fallwrv w.r.t. each voxel (fg),, . can be conveniently
calculated like Eqn. (6), denoted by g,
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In order to reduce low frequency streaks at the original

image, the partial derivative of ||f;|lwrv W.T.t. each voxel
of the original image f is needed, denoted by g,,
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Applying the multi-variant chain rule, g,, and g4 have the
following relation,
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where j € {—L,—L+1,...,L}, k € {0,+1,+2,...}. Here
h; =0 when ¢ < 0 or ¢ > 2- L. Therefore, g, can be obtained
from gy by the following up-sampling operation,
(g/) R (gd)az,y’,,m Jj=0,
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(a) FORBILD phantom

(b) SART

Fig. 5. The modified FORBILD phantom and its SART reconstruction from
the 160° limited angle sinogram. The red box is the region of interest.
Window: [0, 100]HU.

where g/, is up-sampled from g, by inserting zeros between
samples, h’ is the reversed h, i.e, h'; = hor_j;,j €
{0,1,...,2L}, and g, is the convolution of g/, and h’ [26].

The ssaTV-2 algorithm also follows the general framework
of Fig. 3, with regularization at each scale replaced by the
ssaTV-2 minimization substep shown in Fig. 4. Each substep
first down-samples the image f with the scaling factor s to
obtain f;, on which the partial derivative g, is calculated and
a suitable step size ¢4 is found by backtracking line search such
that the wTV value of f,; — ¢4 - g4 decreases. Subsequently,
gq is up-sampled with the same scaling factor s to obtain g,.
Finally, the original image f is updated as f <— f—t4-g,. The
above process is repeated M times, then the corresponding
weights w, are updated.

C. Experimental setup

1) Numerical phantom: In order to validate the advan-
tage of both ssaTV algorithms in reducing large streaks,
experiments on a modified pixelized 2-D FORBILD phantom
(Fig. 5(a)) [40] are performed. The image size is 512 x 512
pixels and each pixel is a 0.5 mmx0.5 mm square. The original
attenuation coefficients are found in [41]. As we do not expect
a useful low-contrast performance in the limited-angle scenario
and thus prefer to focus on objects with moderate or high
contrast, structures with contrasts of 2.5 HU, 5SHU and 10 HU
are modified to 25 HU, S0 HU, and 100 HU. To test the spatial
resolution of reconstructed images in Y direction, the original
left ear of the phantom is replaced by two sequences of bars.
Since we apply the scaling along Y direction, the risk of losing



spatial resolution is higher here. Therefore, we stack bars along
this direction. The bars are categorized as high contrast and
medium contrast bars with attenuation coefficients of 800 HU
and 250 HU, respectively. Each bar sequence contains 5 triples
with increasing width from 0.5 mm to 2.5 mm at an increment
of 0.5 mm. The space between bars is equal to the width of
the bar. The lengths of all bars are 4.5 mm.

For 2-D numerical experiments, a fan-beam scan is simu-
lated with the trajectory shown in Fig. 1(c). The scan angle
range from 10° to 170° is chosen such that most streaks are
expected in the horizontal direction. The size of the equal-
spaced detector is 768 pixels and the detector element size is
0.5 mm. The source to detector distance is d = 1088 mm, the
source to isocenter distance is d’ = d/2 = 544 mm, the fan
angle iS Ymax = 20° and the trajectory angular increment is
1°. Two experiments are performed, with and without Poisson
noise. The Poisson noise is simulated considering a total
number of Iy = 5 - 10% incident photons at each detector
pixel without object attenuation. After object attenuation, the
number of photons for the i-th X-ray is I(i) = Ipe Pi.
Poisson noise is simulated as I'(¢) = P(I(i)), where P() is
a Poisson random variable with variance parameter 7. Thus,
the i-th projection with Poisson noise is p; = —In(I'(¢)/Io).
The simulated X-rays are mono-energetic at 65 KeV. A linear
attenuation coefficient of 0.02/mm is chosen as OHU. No
scattering is considered.

2) Clinical data: The proposed algorithms are also eval-
uated on a 3-D clinical head dataset with a typical noise
level acquired from an Artis zee angiographic C-arm system
(Siemens Healthcare GmbH, Forchheim, Germany). The dose
area product (DAP) of the complete scan is 532 uGy-m?. The
detector size is 1240x960 pixels with an isotropic detector
pixel size of 0.308 mm. The complete dataset contains 496
projections obtained in a 200° short scan. We use wTV to
reconstruct the complete data as an image quality reference.
The reconstructed image is 512 x 512 x 256 voxels large, with
a voxel size of 0.4 mm, 0.4mm, and 0.8 mm in X, Y, and Z,
respectively.

For the limited angle setting, we simulate three acquisitions
with angular ranges covering 160°, 140°, and 120°. The
angular ranges are 10° — 170°, 20° — 160°, and 30° — 150°
and obtained by keeping only the projection images 50 through
446, 75 through 421, and 100 through 396, respectively.

3) Reconstruction parameters: From the limited angle pro-
jections of the numerical phantom and the clinical data, images
are reconstructed with SART, wTV, and both versions of
ssaTV. SART is used to show the image quality without TV
regularization (Fig. 5(b)). We choose the relaxation parameter
A = 0.8 in Eqn. (1). For wTV, we choose M = 10 gradient
descent steps, where the backtracking line search uses a
gradient shrink parameter o = 0.3 and a step size update
parameter 5 = 0.6 [37]. For both ssaTV algorithms, the
same number of total gradient descent steps are applied for
a fair comparison, i.e. Zﬁ’:‘g‘*l My = M = 10. With this
constraint, different combinations of M, are possible, which
influence the convergence behavior. For example, when [, =
2, we have M+ M, = M = 10. If we choose a larger number
for Mo, large streaks are reduced faster. However, when M,

is too low, small streaks and high frequency noise may not
be reduced effectively. Therefore, the chosen combination
of M is a trade-off. In this paper, empirically the follow-
ing combinations are investigated: [My, Mo, My, Mg, Mig] =
[5,5,0,0,0],[3,3,4,0,0],[3,3,2,2,0],[2,2,2,2,2] for lyax =
2,3,4,5, respectively.

For both ssaTV algorithms, we use the normalized binomial
coefficients as approximations of the Gaussian kernel h [39],
ie, hj = (2]15)/22'3 for scale s, which has a standard
deviation o5 = \/s/2.

The parameter € in Eqn. (5) can be chosen in the range
of 1HU and S50HU. A smaller value of € leads to higher
image resolution but a slower convergence speed [15]. In our
experiments, we choose € = 5 HU for the FORBILD phantom.
Each algorithm is run for 500 iterations. For the 3-D clinical
experiments, the images are reconstructed with e = 20 HU. In
the clinical case, we only run the algorithms for 100 iterations
as we observe no significant image quality improvement be-
yond that point. In both experiments, optimization is initialized
with zero images.

4) Quality metrics: As a quality metric for the numerical
experiment, we compute the root-mean-square error (RMSE)
in a region of interest (ROI). The ROI is chosen to cover the
area between the eyes where we expect that most large streaks
occur (Fig. 5(a)).

5) Computation time: The whole experimental setup is
implemented in CONRAD, a software framework for med-
ical imaging processing [42]. The experiments are run on
a FUJITSU laptop with an Intel Core i7-4910MQ CPU @
8 x 2.90 GHz and an NVIDIA Quadro K2100M graphics card.
In our implementation with OpenCL, the average computation
time is about 17 s per iteration for each of wTV, ssaTV-1, and
ssaTV-2.

III. RESULTS

A. Numerical results

The RMSE at the ROI for ssaTV-1 and ssaTV-2 at different
scaling levels is plotted in Fig. 6. The ROI RMSE of wTV
converges after about 400 iterations to the value of 7.0 HU.
The ROI RMSE of ssaTV-1 with different scaling levels all
converge to the same value but have faster convergence speed
than that of wTV. Particularly, a high scaling level accelerates
the speed of streak reduction (Fig. 6(a)), which demonstrates
the advantage of our scale-space approach. The ROI RMSE
of ssaTV-2 converge to 5.0HU, 4.3HU, 3.9HU, and 3.4 HU
for scaling levels 2 through 5 respectively after about 400
iterations. Generally, they converge faster than that of wTV as
well, with a single exception in the case of l;,,x = 3 near the
300th iteration.

The final reconstruction results (exemplarily for l,,x = 3)
and their differences from the ground truth are shown in
Fig. 7. The reconstructed images (Figs. 7(a)-(c)) demonstrate
that both ssaTV algorithms reduce streaks better than wTV.
As a side remark, the difference images (Figs. 7(d)-(f)) reveal
that all three algorithms fail to recover the top boundary where
most data is missing [43].
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Fig. 6. ROI RMSE plots for ssaTV-1 and ssaTV-2 at different scaling levels
on the FORBILD phantom without noise.

Regarding image resolution, Figs. 7(g)-(i) show that both
ssaTV algorithms reconstruct high contrast bars as well as
wTV does. For all algorithms, the finest bars are blurred due to
missing data. For the medium contrast bars, ssaTV-2 separates
them better than wTV and ssaTV-1, while ssaTV-1 is inferior
to wTV.

The reconstruction results for the FORBILD phantom with
Poisson noise are displayed in Fig. 8. Both ssaTV algorithms
can handle noisy data and show its superiority in streak artifact
reduction. It has to be noted that the anisotropic scaling
approach smoothes noise in an anisotropic manner as well.

B. Clincial Results

Reference images of the complete clinical dataset recon-
structed by wTV are shown in Fig. 9. The results of SART,
wTV, ssaTV-1 (Ipax = 3), and ssaTV-2 (l.x = 3) recon-
structed from 160° limited angle data are shown in Fig. 10.
Figs. 10(e) and (f) demonstrate that wTV removes small
streaks and high frequency noise well. However, large streaks
along the horizontal direction still exist and some anatomical
structures are obscured by them. Compared to wTV, large
streaks are reduced in both ssaTV results (Figs. 10(i)-(p)).
Fig. 11 shows a zoom-in (red box in Fig. 9) of the fine bone
structures. Fig. 11(b) displays that wTV fails to reconstruct
some horizontal structures indicated by the red solid arrows
that both ssaTV algorithms are able to recover better.

The reconstruction results for the 140° and 120° angular
ranges are shown in Fig. 12. For wTV, severe large streaks are

(b) ssaTV-1 (c) ssaTV-2

(d) wTV, difference

(e) ssaTV-1, difference (f) ssaTV-2, difference

(g) wTV, bars (h) ssaTV-1, bars (i) ssaTV-2, bars

Fig. 7. Comparison of wTV, ssaTV-1 (Imax = 3), and ssaTV-2 (Imax = 3)
using the modified FORBILD phantom without noise, 500 iterations. Window:
[0 100] HU for the top row, [0 800] HU for the bottom row, and a window

width of SOHU for the difference images at the middle row.

(a) wTV

(b) ssaTV1

(c) ssaTV2

Fig. 8. Comparison of wTV, ssaTV-1 (Imax = 3), and ssaTV-2 (Imax = 3)
using the modified FORBILD phantom with Poisson noise, 500 iterations.
Window: [0 100] HU.

observed (Figs. 12(a) and (d)). Again, they are reduced with
ssaTV-1 and ssaTV-2, indicating that the proposed methods
are also feasible in streak reduction for smaller angular scan
ranges. However, with more data missing, several anatomical
structures are degenerated.

IV. DISCUSSION

We observe that wTV, ssaTV-1, and ssaTV-2 reconstruct
high contrast structures better than low contrast structures.
This is partially because the weights in Eqn. (5) are larger
for low contrast structures, which leads to a stronger TV
regularization effect, blurring fine low contrast structures.

The weight vector causes the overall minimization of
|| f]lwrv to become non-convex. The existence of local minima
is a common problem in non-convex optimization. Scale-space
approaches have the chance to avoid local minima since they
might disappear in coarser scales and searching for the solution



(a) wTV, 65th slice  (b) wTV, 140th slice

Fig. 9. Reference images reconstructed from the complete clinical dataset
with wTV. The red box is the ROI for fine bone structures. Window: [-1000
1730] HU and [-220 365] HU for left and right images, respectively.

(b) SART

(d) difference

(h) difference

(j) ssaTV-1 (1) difference

(m) ssaTV-2

(n) ssaTV-2

(o) difference

(p) difference

Fig. 10. Reconstruction results of SART, wTV, ssaTV-1 (Imax = 3), and
$saTV-2 (Imax = 3) from 160° limited angle data, 100 iterations. Window:
[-1000 1730] HU and [-220 365] HU for the first and second columns,
respectively. The difference images at the third and fourth columns are shown
with a window width of 780 HU.

is more efficient than at the original scale [24], [25]. That is
why the proposed ssaTV algorithms reduce large streaks more
efficiently and effectively than wTV. Due to the FORBILD
phantom being piece-wise constant, wTV is able to reduce
streaks almost as well as the two ssaTV algorithms given
enough iterations in the numerical experiments. However, the
clinical data has very complex structures and it suffers from
more complex noise and other data inconsistencies except for
Poisson noise, which potentially cause wTV to fail to reduce
the large streaks here, even given more iterations.

In general, ssaTV-1 and ssaTV-2 are roughly equivalent in
the sense that they both minimize the wTV term at various
scales of the image, which are attained by low-pass filtering
of the original image. Due to the special streak orientations in

(a) reference image (b) wTV (c) ssaTV-1 (d) ssaTV-2

Fig. 11. Reconstructed fine bone structures for wTV, ssaTV-1 (Imax = 3),
and ssaTV-2 (Imax = 3), window [-1000 1730]HU. The horizontal bone
structures indicated by the arrows are missing (solid arrows) or blurred (hollow

arrows).

(b) ssaTV-1 (c) ssaTV-2

(d) wTV

(e) ssaTV-1

(f) ssaTV-2

Fig. 12. Reconstruction results of the 140° (top row) and 120° (bottom row)
angular ranges at 100th iteration for wTV, ssaTV-1 (Imax = 3), and ssaTV-2
(Ilmax = 3), window: [-1000 1730]HU.

limited angle tomography, ssaTV-1 and ssaTV-2 both apply the
scaling anisotropically in streaks’ normal directions. Figs. 7
and 10 demonstrate that they have a similar effect on streak
reduction.

In limited angle tomography, wTV, ssaTV-1 and ssaTV-2
all suffer from missing data. For example, all three algorithms
fail to exactly reconstruct the top boundaries (Figs. 7 and
10) and the horizontal bone structure indicated by the blue
hollow arrows (Fig. 11). Compared with the structures in the
vertical direction (Fig. 11), those in the horizontal direction are
relatively more difficult to reconstruct because no horizontal
X-rays pass through the object in the 10° — 170° case [43].

V. CONCLUSION

Due to the anisotropic nature of limited angle tomography,
anisotropic TV regularization is beneficial for artifact reduc-
tion. Optimization in scale space can accelerate the optimiza-
tion process. In this paper, we propose two implementations
of ssaTV derived from wTV with the same core idea. Both
implementations apply wTV regularization in scale space and
utilize low-pass filtering anisotropically to obtain coarse scale
variations along streaks’ normal direction. However, ssaTV-
1 uses a modified gradient-like operator which considers
2 - s neighboring pixels to compute the image gradient while
ssaTV-2 uses down-sampling and up-sampling operations.

Both ssaTV algorithms are investigated in numerical and
clinical experiments. Compared to wTV, ssaTV-1 and ssaTV-



2 reduce streak artifacts more effectively and with a high
convergence speed, particularly when using multiple scaling
levels. In addition, the experiments indicate that the methods
are applicable when a typical amount of noise exists.
Regarding image quality, both ssaTV-1 and ssaTV-2 recon-
struct large high contrast structures very well. For medium
and low contrast structures, ssaTV-1 may slightly lose spatial
resolution while ssaTV-2 appears superior to wTV.

DISCLAIMER
The concepts and information presented in this paper are
based on research and are not commercially available.
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