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Abstract

Purpose The application of traditional machine learning techniques, in the form
of regression models based on conventional, “hand-crafted” features, to artifact
reduction in limited angle tomography is investigated.

Methods Mean-variation-median (MVM), Laplacian, Hessian, and shift-variant
data loss (SVDL) features are extracted from the images reconstructed from lim-
ited angle data. The regression models linear regression (LR), multi-layer percep-
tron (MLP), and reduced-error pruning tree (REPTree) are applied to predict
artifact images.

Results REPTree learns artifacts best and reaches the smallest root-mean-square
error (RMSE) of 29 HU for the Shepp-Logan phantom in a parallel-beam study.
Further experiments demonstrate that the MVM and Hessian features complement
each other, whereas the Laplacian feature is redundant in the presence of MVM.
In fan-beam, the SVDL features are also beneficial. A preliminary experiment on
clinical data in a fan-beam study demonstrates that REPTree can reduce some
artifacts for clinical data. However, it is not sufficient as a lot of incorrect pixel
intensities still remain in the estimated reconstruction images.

Conclusion REPTree has the best performance on learning artifacts in limited an-
gle tomography compared with LR and MLP. The features of MVM, Hessian, and
SVDL are beneficial for artifact prediction in limited angle tomography. Prelimi-
nary experiments on clinical data suggest that the investigation on more features
is necessary for clinical applications of REPTree.
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(a) Custom phantom (b) FBP reconstruction

Fig. 1 Demonstration of artifacts in limited angle tomography: a custom phantom (a) and its
filtered back-projection (FBP) reconstruction (b) from 160◦ limited angle sinogram acquired
in a limited angle scan (Fig. 2) in fan-beam geometry, window: [-300, 200] HU.

1 Introduction

C-arm angiographic devices are capable of acquiring 3-D images for planning,
guiding, and monitoring of interventional operations. The 3-D images provide more
detailed anatomical structures and better spatial information than conventional 2-
D fluoroscopy images, which significantly facilitates the interventional operations.
For image reconstruction in computed tomography (CT), a minimal angular range
is required to acquire complete projection data, which is called a short scan. How-
ever, due to system restrictions, such a short scan is not achievable for some C-arm
devices. In this case, some data are missing.

Image reconstruction from data acquired in an insufficient angular range is
called limited angle tomography. Because of missing data, artifacts will occur in
the reconstructed images. They cause boundary distortion, intensity leakage, and
edge blurring as demonstrated in Fig. 1. Especially, a lot of streak artifacts occur
along the missing angular ranges. Using microlocal analysis, edges that are tangent
to available X-rays are well reconstructed while those whose singularities are not
perpendicular to any X-ray lines cannot be reconstructed stably [1, 2].

So far, many interpolation/extrapolation methods are proposed to restore miss-
ing data in limited angle tomography [3–10]. Some are based on the iterative
Papoulis-Gerchberg algorithm [3–7], which is popular to extrapolate band-limited
signals. Some are based on consistency conditions like the well-known Helgason-
Ludwig consistency conditions [8–10]. The reconstruction problem in limited angle
tomography is severely ill-posed [11, 12], such that only low frequency parts of the
missing frequency components of an imaged object are restored credibly while high
frequency ones are not [10].

With the development of compressed sensing technologies, iterative reconstruc-
tion with total variation (TV) regularization becomes popular for limited angle
tomography [13–18]. TV methods employ the prior knowledge that most medical
images are sparse in the gradient domain. Hence, image quality can be improved.
In addition, streak artifacts have certain orientations dependent on scan trajecto-
ries. Making use of such information, anisotropic TV algorithms are more effective
to reduce artifacts than isotropic ones [16–18]. However, iterative algorithms are
computationally expensive, which restrains their applications to interventional sce-
narios.
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Recently, deep learning has outperformed the state of the art in various fields
including CT [19, 20]. For limited angle tomography, Würfl et al. [21] propose a
neural network to learn the compensation weights for limited angle data based
on [22]. Hammernik et al. further add a variational network to eliminate coher-
ent streak artifacts [23]. Gu and Ye adapt the U-Net architecture [24] to learn
artifacts from streaky images in the multi-scale wavelet domain [25]. These meth-
ods can reduce artifacts in limited angle tomography well. Especially, the U-Net
architecture, which is a fully convolutional neural network (CNN), has achieved
impressive results for small scan angular ranges like 120◦ [25]. For deep learning,
hand-crafted feature extraction is avoided since CNNs extract intrinsic features
from high dimensional data by learning a number of small convolutional kernels
[26].

Although deep learning has achieved impressive results in limited angle to-
mography, traditional machine learning techniques, i. e., a pixel-by-pixel predic-
tion based on hand-crafted features, in limited angle tomography remains blank
in literature. Therefore, in this paper we investigate three regression models in
such a setup for limited angle tomography, namely, linear regression (LR), multi-
layer perceptron (MLP), and reduced-error pruning tree (REPTree). In addition,
feature extraction is crucial for traditional machine learning. Therefore, in this
paper the influence of several selected features is investigated.

2 Materials and Methods

2.1 Input and Output

A general machine learning pipeline includes four main parts: input observations,
feature extraction, a classification/regression model, and output labels. In this
work, we choose the images reconstructed from the limited angle data (denoted
by flimited) as the input observations, and feature attributes will be extracted from
them.

For the output of training, either artifact-free reference images (denoted by
freference) or residual artifact images (denoted by fartifact, fartifact = flimited−freference)
can be chosen. Then the output of testing is an estimated artifact-free image or
an estimated artifact image, correspondingly. In limited angle tomography, streak
artifacts are the main artifacts and they share some similar features even though
the artifact-free images are drastically different from each other. Therefore, Gu and
Ye suggest that learning the artifact images is easier than learning the artifact-
free images directly [25]. Hence, in this work we choose the artifact images as the
output. Since we seek a pixel-by-pixel prediction based on hand-crafted features,
each pixel value in the artifact images is an individual output label of a regression
model.

2.2 Feature Extraction

Streak artifacts in limited angle tomography appear evidently near object bound-
aries. They are closely associated with object edges and have certain directions
that are mainly determined by the acquisition geometry. Edges along directions
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of missing X-rays cause streaks in the same directions. Therefore, the following
features are used for streak artifact prediction.

Mean-variation-median (MVM) At each position (x, y), the intensity of
fartifact(x, y) is highly related to the intensity of flimited(x, y). Therefore, the intensity
of flimited(x, y) is one feature. As it is difficult to predict streak artifacts from a single
pixel, the information of its neighborhood, typically an image patch, is necessary.
Storing all the raw neighboring pixel values is memory expensive. Instead, the
neighborhood can be characterized by the mean, variance, and median statistic.

Laplacian The Laplacian, or the Laplace operator, is one of the most popular
edge detectors. It is a second order differential operator, which is defined as,

∆f(x, y) = ∇2f(x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
. (1)

Hessian The Hessian matrix is a structure tensor constructed by second-order
partial derivatives. It describes the local curvature of an image. The image f(x, y)
is first smoothed by a Gaussian kernel Gs(x, y) with a standard deviation s, i. e.,
fs(x, y) = f(x, y)∗Gs(x, y). The Hessian matrix at position (x, y) is computed as,

Hs(x, y) =

[
∂2fs(x,y)

∂x2
∂2fs(x,y)

∂x∂y
∂2fs(x,y)

∂y∂x
∂2fs(x,y)

∂y2

]
. (2)

Using the singular value decomposition, the two eigenvalues λ1 and λ2 (λ1 ≥ λ2),
and the two eigenvectors v1 and v2 can be computed. We pick the X direction as
a reference direction and the orientation of the local curvature w. r. t. it is,

d = arccos([1, 0]> · v1/||v1||). (3)

In this paper, λ1, λ2, and d are the selected Hessian features.
Shift-variant data loss (SVDL) In our experimental setting, the detector is

always large enough to cover the projection of the whole imaged object. With such
a constraint, different points at different locations have the same angular range of
X-rays passing through them in parallel-beam limited angle tomography. However,
in fan-beam limited angle tomography, different points at different locations have
different angular ranges of X-rays missing, which we call shift-variant data loss. In
a circular fan-beam trajectory, we denote the start and end rotation angles of an
X-ray source by βmin and βmax, respectively, and the source-to-isocenter distance
by D. As displayed in Fig. 2, when the X-ray source rotates from the start position
S0 to the end position s1, X-rays between the directions of η1 and η2 can pass
through a point x(x, y). The two angles can be calculated as,

η1 = atan

(
y +D sinβmin

D cosβmin − x

)
, η2 = atan

(
x−D cosβmax

y +D sinβmax

)
+
π

2
, (4)

which are dependent on the position of the point x and can indicate the orien-
tations of streak artifacts. We further denote the covered angular range by ∆η,
where ∆η = η2− η1 and typically ∆η < π in limited angle tomography. When ∆η
is small, it is very likely to have artifacts at point x. Since picking two of the three
parameters η1, η2, and ∆η is sufficient to describe the covered angular region, we
choose η1 and ∆η as the SVDL features in this paper.
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Fig. 2 The scan trajectory in fan-beam limited angle tomography and a sketch of the shift-
variant data loss model. The X-ray source rotates from s0(βmin = 10◦) to s1(βmax = 170◦).
The rays with angles η1 and η2 are the rays passing through the point x with the minimum
and the maximum angles, respectively.

2.3 Regression Models

In this paper, we investigate the following three regression models.
Linear Regression Linear regression is the most popular method in many

statistical applications. It expresses the output label as a linear combination of
the extracted feature attributes and the trained weights.

Multi-layer Perceptron MLP [27, 28] can learn more complex, nonlinear
functions than linear regression. MLP generally contains an input layer, several
hidden layers, and an output layer. At hidden layers, nonlinear activation func-
tions like the sigmoid activation function are typically used. The backpropagation
method with stochastic gradient descent method is used for training.

Reduced-Error Pruning Tree A decision tree utilizes a tree-like structure
to predict an output from the feature attributes. A tree is learnt recursively by
splitting the training data set into subsets based on attribute value tests. The
recursion process stops when the subset at a node has all the same value, or the
tree reaches the maximum depth. Gini impurity or information gain is typically
used to obtain an optimal attribute order for splitting [29]. A pruning process is
employed to prevent overfitting. In this paper, we use the reduced-error pruning
tree (REPTree) [30] which is a simple and fast pruning method. The pruning
starts at the leaves and each node is replaced with its most popular class value.
The change is kept if the resulting tree performs no worse than the original on the
validation set. The REPTree algorithm uses the information gain for splitting.

2.4 Workflow

A flowchart summarizing our implementation of machine learning algorithms for
limited angle tomography is displayed in Fig. 3. For an input limited angle recon-
struction image flimited, at pixel/position (x, y), an image patch is generated and
features of MVM, Laplacian, Hessian, or SVDL are extracted from this patch. The
extracted features form a feature vector x. With a trained regression model, the in-
tensity of fartifact at pixel (x, y) is estimated, denoted by Ix,y in the flowchart. When
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Feature Extraction

Regression Models

MVM
Laplacian
Hessian
SVDL

LR
MLP
REPTree

Input Image flimited Image Patch Px,y Feature vector x

Estimated artifact value Ix,yEstimated artifact image fartifactEstimated image fest

Fig. 3 A flowchart summarizes our implementation of machine learning algorithms for limited
angle tomography.

the values Ix,y of all the pixels are estimated, the artifact image fartifact is obtained.
Then the artifact reduced image is estimated, denoted by fest = flimited − fartifact.

2.5 Experimental Set-up

To initially check the validity of different features and regression models, a 3-
D standard high-contrast pixelized Shepp-Logan phantom is generated. Its pixel
value is at the range of [0, 1], which is converted to [-1000, 1000] HU in the
Hounsfield unit. Its image size is 512 × 512 × 200. The pixel size is 0.4 mm in
X and Y directions and 1.024 mm in Z direction. We pick 150 slices from the 3-D
volume and one half of them are used for training, the other half for validation.

We first investigate the effects of different regression models and different fea-
tures in parallel-beam using the selected Shepp-Logan images. In parallel-beam,
the angles η1 and ∆η for different position points are all the same. Therefore,
the SVDL features are omitted here. We reproject the images using a ray-driven
method with a sampling rate of 7.5/mm. No noise is simulated. The scanned angu-
lar range is 160◦. The angular step is 0.5◦. The number of the equal-space detector
pixels ND is 1537 and the detector element size is 0.2 mm.

To validate the application of REPTree in fan-beam and further investigate
the effect of the SVDL features, a fan-beam study is conducted using the same
selected Shepp-Logan images. The images are reprojected in a fan-beam geometry.
The angular increment is 0.5◦. The detector has 1536 pixels and the pixel size is
0.4 mm. The source-to-detector distance is 1740 mm and the source-to-isocenter
distance is 870 mm. The fan angle is 20◦. The scan angular range is 160◦.

As preliminary experiments for clinical data, 18 patients’ CT data from the Low
Dose CT Grand Challenge [31] are used, 8 patients for training, another 8 patients
for validation, and 2 patients for testing. For each patient, we pick 10 slices. Each
slice is 20 mm away from its neighboring slices and has a size of 512 × 512 with
an isotropic pixel size of 0.625 mm. The selected images are reprojected in the
same fan-beam geometry as the fan-beam Shepp-Logan experiment. The REPTree
model is retrained using the MVM, Hessian, and SVDL features.

The images flimited are reconstructed using filtered backprojection (FBP) with
the Ram-Lak filter from the limited angle projections for both the Shepp-Logan
data and the clinical data.

The machine learning algorithms are based on the Waikato Environment for
Knowledge Analysis (Weka) [32]. MLP uses four hidden layers. The learning rate,
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Fig. 4 The reference slice of the Shepp-Logan phantom shown in window [-700, -500] HU.

(a) Reference fartifact (b) LR (c) MLP (d) REPTree

(e) flimited, 140.2 HU (f) LR, 139.0 HU (g) MLP, 133.4 HU (h) REPTree, 29.3 HU

Fig. 5 Learnt artifact images using different machine learning algorithms and their corre-
sponding reconstructed images in parallel-beam with a 160◦ trajectory (from −80◦ to 80◦

in Fig. 2). The MVM, Laplacian, and Hessian features are used. The RMSE of the estimated
images is displayed in the subcaptions (e)-(h). Window width for the top row: 400 HU; window
for the bottom row: [-700, -500] HU.

the momentum, and the epochs are set to 0.3, 0.2 and 100, respectively. REPTree
sets 1 as the minimum number of instances per leaf node and the maximum depth
of the tree is set to be unlimited. The MVM features are extracted from quadratic
image patches of side length 2, 4, 8 and 16. For the Hessian features, the standard
deviation s is set to 9 pixels. The whole implementation is based on CONRAD
[33].

3 Results

3.1 Parallel-beam Numerical Data

The center slice (Fig. 4) of the validation dataset of the Shepp-Logan phantom
is picked as an example to show the effects of different regression models. Fig. 5
displays the results of different regression models using all the features of MVM,
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(a) (b) (c)

(d) (e) (f)

Fig. 6 The results of REPTree using different feature combinations in parallel-beam with a
160◦ trajectory: (a) MVM, (RMSE =) 38.4 HU; (b) Laplacian, 119.2 HU; (c) Hessian, 76.48 HU;
(d) MVM and Laplacian, 38.5 HU; (e) MVM and Hessian, 28.9 HU; (f) Laplacian and Hessian,
65.0 HU. Window: [-700, -500] HU.

Laplacian, and Hessian in parallel-beam. Compared with the reference streak arti-
fact image (Fig. 5(a)), LR misclassifies the edges as streak artifacts and recognizes
few streaks (Fig. 5(b)). MLP can recognize streak artifacts better than LR, but
it still misclassifies the edges as artifacts (Fig. 5(c)). Instead, REPTree classifies
most streak artifacts correctly with only minor misclassifications (Fig. 5(d)). By
subtracting the learnt streak artifacts, the “destreaked” images are estimated in
Figs. 5(f)-(h). While streak artifacts remain in the results of LR and MLP, most
of them are reduced by REPTree. The root-mean-square error (RMSE) of the de-
streaked images w. r. t. the reference image (Fig. 4) is further computed. REPTree
reaches the smallest RMSE value of 29.3 HU.

To investigate the effects of different features in streak artifact classification,
the results of REPTree using different combinations of features for the Shepp-
Logan data in parallel-beam are shown in Fig. 6. As mentioned before, the SVDL
features are omitted here since all the pixels at different positions have the same
SVDL features in parallel-beam. Figs. 6(a)-(c) indicate that using MVM only is
able to predict most artifacts while using Laplacian or Hessian only is not suffi-
cient. Fig. 6(f) shows that the combination of Laplacian and Hessian is even worse
than MVM only, which indicates that MVM is important to predict streak arti-
facts. Comparing Fig. 6(d) with Fig. 6(a), the Laplacian feature is redundant in
the presence of MVM since Fig. 6(d) and Fig. 6(a) have almost the same image
quality. Fig. 6(e) and Fig. 5(h) also demonstrate that skipping the Laplacian fea-
ture does not change image quality. Fig. 6(e) indicates that the Hessian features
are beneficial, compared with Fig. 6(a).
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(a) Reference fartifact (b) Without SVDL (c) With SVDL

(d) flimited (e) Without SVDL (f) With SVDL

Fig. 7 The effect of the SVDL features in fan-beam with a 160◦ trajectory. The top row
images are the reference artifact image and the learnt artifact images by REPTree without
or with the SVDL features along with the MVM and Hessian features displayed in a window
width of 400 HU. The bottom row images are the corresponding reconstructed images displayed
in window [-700, -500] HU. Two ROI (marked as the red squares in (d)) images are shown at
the left bottom corner and the right bottom corner, respectively. The RMSE for (d)-(f) are
132 HU, 37 HU, and 34 HU, respectively.

3.2 Fan-beam Numerical Data

The fan-beam results of the center slice of the Shepp-Logan data are displayed
in Fig. 7. Fig. 7(b) is the learnt artifact image by REPTree using the MVM and
Hessian features. It demonstrates that REPTree can also learn most of the artifacts
for the Shepp-Logan data in fan-beam. The corresponding reconstructed image is
shown in Fig. 7(e), where most artifacts are reduced. However, some isolated pixels
have strongly incorrect intensities which can be seen as black or white dots. They
can be better seen at the region-of-interest (ROI) images displayed at the left and
right bottom corners in Fig 7(e). The artifact image learnt by REPTree using the
MVM, Hessian, and SVDL features is shown in Fig. 7(c) and the corresponding
reconstruction image is shown in Fig. 7(f). Compared with Fig. 7(e), most of the
incorrect pixel intensities are corrected in Fig. 7(f), which can be better seen at
the ROI images in Fig 7(f). This demonstrates that the SVDL features are also
beneficial for artifact reduction in limited angle tomography. We might note that
the RMSE is not much affected since only isolated pixels are corrected.

The evaluation of the whole validation dataset is shown in Fig. 8 where the
RMSE and the structural similarity (SSIM) indices [34] are computed. For the
RMSE, its value gradually decreases from around 37 HU to 21 HU with some os-
cillations when the slice is from the center to the top or the bottom. Consistently,
the SSIM index increases from around 0.996 to 0.998.
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Fig. 8 The RMSE and SSIM indices of the validation slices of the Shepp-Logan data in
fan-beam with a 160◦ trajectory.

3.3 Fan-beam Clinical Data

The preliminary experiments on the clinical data are displayed in Fig. 9. Com-
paring Fig. 9(c) with Fig. 9(b), most artifacts in Fig. 9(c) are reduced, which
demonstrates that REPTree is also able to reduce some artifacts for clinical data.
However, many isolated pixels have incorrect intensities in Fig. 9(f) (black dots).
From Fig. 7 we already know that MVM and Hessian are insufficient in the fan-
beam geometry. The SVDL features are able to correct most black dots for simple
phantom data. However, they are not sufficient for clinical data. Therefore, more
features have to be applied for clinical applications. The images in Fig. 9 are re-
displayed in Fig. 10 using a small window where most soft tissues can be seen.
In Fig. 10(c) and Fig. 10(f), most intensity biases are corrected comparing to
Fig. 10(b) and Fig. 10(e), respectively. However, still many anatomical structures
are obscured by the new artifacts introduced by REPTree. Figs. 9 and 10 reveal
the limitation of REPTree in the application of clinical data.

The evaluation of the selected 20 testing slices from the 2 testing patients,
Patient 1 and Patient 2, is shown in Fig. 11. The RMSE values of the estimated
slices of Patient 1 are all around 63 HU while their SSIM indices are around 0.992.
The RMSE values of the estimated slices of Patient 2 vary from 70 HU to 85 HU
while their SSIM indices vary from 0.980 to 0.990.

4 Discussion

The mapping from the selected feature attributes to the streak artifacts is a com-
plex nonlinear function. Therefore, LR fails to model that. Although a large MLP
with enough hidden units can model any nonlinear functions, in our case, MLP
fails to find the desired function during training. REPTree represents the map-
ping function well with enough nodes and it reduces the overfitting problem with
pruning. Therefore, REPTree performs best in the experiments (Fig. 5).
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(a) fReference (b) flimited, 139 HU (c) REPTree, 64 HU

(d) fReference (e) flimited, 141 HU (f) REPTree, 85 HU

Fig. 9 The reference images, the limited angle reconstructions, and the machine learning
results using REPTree with the MVM, Hessian, and SVDL features of two patients in fan-
beam with a 160◦ trajectory. Window: [-1200, 1400] HU.

(a) fReference (b) flimited, 139 HU (c) REPTree, 64 HU

(d) fReference (e) flimited, 141 HU (f) REPTree, 85 HU

Fig. 10 The images in Fig. 9 are redisplayed in a small window [-200, 200] HU.

The Laplacian feature is redundant in the presence of MVM (Fig. 6). As a
potential reason, one has to consider that the Laplacian is just a linear combination
of the neighboring pixels described by MVM. The Hessian features are beneficial
since they stress on the strength as well as the orientation of local curvatures,
which are essential properties of limited angle streak artifacts. The SVDL features
indicate the orientations of streak artifacts. They also tell the amount of missing
information at different positions. Therefore, the SVDL features are also beneficial.
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(b) Patient 2

Fig. 11 The RMSE and SSIM indices of the testing slices of the clinical data in fan-beam
with a 160◦ trajectory. Slice 10 of Patient 1 corresponds to Fig. 9(c) and Slice 1 of Patient 2
corresponds to Fig. 9(f).

In the Shepp-Logan experiments, the training data and the validation data
share a lot of similarities, since both of them are selected from the 3-D Shepp-
Logan phantom. Nevertheless, these experiments are sufficient to validate whether
a regression model is able to represent the mapping function between the output
pixel value and the selected features in the ideal case. However, the clinical data
are much more complex than the Shepp-Logan data. Therefore, REPTree is not
sufficient to reduce all artifacts, although it is able to reduce some of them (Fig. 9).
Especially, in this paper, we use a pixel-by-pixel prediction based on hand-crafted
features from its neighborhood. In this setting, the prediction result of each pixel is
somewhat independent on its neighboring prediction results, even though we select
the neighboring information via the MVM features in the input images. Therefore,
the context of the image is lost and isolated dark areas occur (Fig. 9(f)).

5 Conclusion

In summary, we investigate the application of LR, MLP, and REPTree for arti-
fact reduction in limited angle tomography. The experiments on the Shepp-Logan
phantom demonstrate that REPTree has the best performance on learning arti-
facts compared with LR and MLP. They also indicate that MVM, Hessian, and
SVDL features are beneficial for artifact prediction while the Laplacian is redun-
dant in the presence of MVM. The preliminary experiment on clinical data shows
the limitation of REPTree and the selected features. It indicates that further im-
provement of REPTree is necessary for clinical applications.
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