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Abstract—Phase-sensitive systems can deliver improved CT
imaging performance for materials with low attenuation contrast,
and, due to the differential nature of their images, when high
spatial resolution is required. Typically, these systems only yield a
directional derivative of a projection image along one sensitivity
direction. The sensitivity direction is usually tangential to the CT
trajectory. However, it is also conceivable to build systems with
other sensitivity directions.

The purpose of this paper is two-fold. First, we investigate
the noise behavior of differential CT for sensitivity directions
in z-direction and for bi-directional projections. Second, we use
Wiener filtering to derive noise-suppressing window functions for
all three sensitivity directions.

Our experiments indicate that the benefit that can be obtai-
ned from optimized window functions depends on the overlap
between object spectrum and the Noise Power Spectrum, and
thus on the sensitivity direction. We also find that sensitivity in
z-direction yields a noise texture that is unsuitable for CT.

Index Terms—X-ray, phase-contrast, sensitivity direction, de-
noising

I. INTRODUCTION

Recently, several measurement principles for X-ray phase
contrast haven been proposed. Most notable of these are
the Talbot-Lau interferometer [1], diffraction-enhanced sys-
tems [2] and coded apertures [3]. These systems share a
common trait: they can only obtain differential phase-contrast
contrast projection images along one sensitivity direction.

When performing CT acquisitions, these systems are typi-
cally operated such that the sensitivity direction is tangential
to the CT trajectory, and thus radial to the rotation axis when
rotating. For the Talbot-Lau interferometer (coded apertures)
this means that the grating bars (the apertures) are parallel to
the rotation axis. The noise behavior of this configuration has
been studied extensively in [4], [5], [6].

In principle, the sensitivity axis can be chosen arbitrarily by
rotating the phase-sensitive components of the system along
the optical axis. For example, it has been shown that direction-
dependent dark-field CT [7], [8] reconstruction can benefit
from having the sensitivity direction in z-direction [9], i.e.
parallel to the rotation axis. For a fan-beam-like geometry,
z-sensitivity has the further advantage that the gratings (aper-
tures) do not have to be bent to match the fan angle.

It is also conceivable to acquire two perpendicular directio-
nal derivatives. For geometries that can be approximated well
using parallel beams, this can be realized relatively easily by
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using diagonal gratings (apertures) and has shown to yield
reduced reconstruction noise when compared to the standard
radial sensitivity approach [10].

In the this paper, we investigate the Noise Power Spectrum
of a differential CT system depending on its sensitivity
direction. We ignore the system-specific phase sensitivity
and noise behavior to obtain a system-neutral analysis for
CT reconstruction of differential projections. Specifically, we
consider three configurations: the standard approach of radial
sensitivity, sensitivity in z-direction and sensitivity in both
directions (at half dose for each direction).

Additionally, we use the analytical Noise Power Spectrum
and Wiener filtering to define noise-suppressing window
functions for these configuration, as each shows a vastly
different noise texture. To our knowledge, this is the first study
of the noise behavior of non-standard sensitivity configuration
and also the first paper to propose practicable window functi-
ons for differential CT.

II. METHODS

In the following sections, we will derive the Noise Power
Spectrum of differential CT and use this information to derive
noise-suppressing window functions.

A. Noise Power Spectrum

We follow the simplified model of a parallel beam recon-
struction with uniform projection Noise Power Spectrum and
multiple slices with voxel and pixel size a as in [4]. In this
case the total radial Noise Power Spectrum NPStot is given
by

NPStot(ρr, ρz) = f2RamLak · finvradon · f2interpol · f2integration .
(1)

Here, ρr denotes the radial frequency and ρz denotes the fre-
quency in z-direction, i.e. across slices. For the RamLak filter
we have fRamLak = |ρr| · rect(ρr/2a), for Radon inversion
we have finvradon = 1/|ρr| and for linear interpolation onto a
grid of voxels with size a we have finterpol = sinc(πaρr)

2 =
[sin(πaρr)/(πaρr)]

2. This yields

NPStot(ρr, ρz) = |ρr|·rect(ρr/(2a))·sinc(πaρr)4·f2integration .
(2)

The frequency response f2integration for integrating the diffe-
rential projections depends on the sensitivity direction. For the
standard approach of radial sensitivity we have for a [−1; 1]
backward discretization of the derivative operator [4]

f radintegration = a/[2 sin(πaρr)] . (3)



a) b) c) d)
Fig. 1. Sample CT noise realizations displayed in arbitrary units, created as described in Section III. Top row: X-Y plane. Bottom row: X-Z plane. a)
Non-differential projections. b) Differential (radial). c) Differential (z-direction) d) Differential (both directions). The linear scale is identical all images, except
for the noise obtained for differential (z-direction), which was downscaled by a factor of five.

For sensitivity in z-direction we simply have to change the
integration direction

f zintegration = a/[2 sin(πaρz)] . (4)

Note that both integration steps assume that the object is
non-truncated along the integration direction. Thus, having the
sensitivity direction in z-direction requires not only a non-
truncated object in radial direction (due to the inverse Radon
transform) but also in z-direction (due to the integration across
slices).

The frequency response of 2-D integration can be calculated
by considering its closed form solution in Fourier domain,
yielding

f2Dintegration =
√
2a/[2 sin(πaρr) + 2 sin(πaρz)] . (5)

Here, the prefactor
√
2 accounts for having only half of the

dose for determining the image information for each direction.
The non-truncation requirements of 2-D integration are relaxed
compared to 1-D integration, here only one known pixel has
to be outside of the object.

Each of the integration factors lead to the amplification
of low frequency noise. For radial sensitivity NPSradtot → ∞
for ρr → 0, although the frequency response of the ramp
filter combined with the inverse Radon transform partially
compensate the low-frequency noise induced by integration.

This is not the case for integration in z-direction, where
NPSztot → ∞ for ρz → 0. Here, ramp filtering acts as a
high-pass in radial direction, while integration acts as a low-
pass in z-direction, suggesting a noise pattern with a high
autocorrelation in z-direction and negative autocorrelation in
radial direction.

For 2-D integration NPS2Dtot → ∞ only for ρr, ρr → 0,
indicating autocorrelated noise in both directions.

The quadratic scaling of the Noise Power Spectrum by the
pixel size a is identical for all sensitivity directions and can
thus be ignored when comparing the relative performance of
sensitivity directions.

Sample CT noise realizations obtained by reconstructing the
same amount of projection noise are shown in Fig. 1. The noise
texture is in accordance with the noise autocorrelation behavior
given by the Noise Power Spectrum. The approach with sen-
sitivity in z-direction suffers from strong noise amplification
due to integration being not aligned with ramp filtering.

B. Noise-Suppressing Windows

In the following, we will use Wiener Filtering to derive
noise-suppressing window functions for differential CT. Note
that in contrast to a conventional window function, our window
not only operates in radial direction, but also in z-direction.
Wiener filtering can be realized by applying window function
W in Fourier domain. The frequency-dependent window
function is given by the (also frequency-dependent) signal-
to-noise ratio:

W =
1

1 + 1
SNR

. (6)

For CT, the signal-to-noise ratio depends on the object to
be reconstructed and the noise. Both are unknown quantities,
however the noise can be estimated using the analytical model
of the Noise Power Spectrum (Eqn. 2). We thus require only
an estimate of the Power Spectrum of the object, denoted as
Ô, to estimate the SNR as Ŝ:

Ŝ(ρr, ρz) =
Ô(ρr, ρz)

NPStot(ρr, ρz)
. (7)

This step allows to define the noise-suppressing window
function independent on the noise behavior of the system.



non-differential reconstruction, PSNR noisy: 11.7dB, PSNR denoised: 20.2dB (+8.5dB)

radial-differential reconstruction, PSNR noisy: 14.3dB, PSNR denoised: 18.0dB (+3.7dB)

z-differential reconstruction, PSNR noisy: -7.4dB, PSNR denoised: 12.4dB (+19.0dB)

bi-differential reconstruction, PSNR noisy: 14.5dB, PSNR denoised: 17.2dB (+2.7dB)
a) b) c) d)

Fig. 2. Reconstruction results of applying the proposed Wiener window to modified version of the head phantom. a) central X-Y plane, noisy. b) central
X-Y plane, denoised. c) central X-Z plane, noisy. d) central X-Z plane, denoised. The same intensity window has been applied to all images.

Note that by choosing an appropriate Ô, the tradeoff between
reconstruction fidelity and noise can be attuned to objects
of different contrast, shape, or size, given that the object is
radially symmetric.

Due to the interchangeability of filtering and backprojection,
the window function can also be applied to projections. This
results in negligible computational demand for applying the
window, as it involves replacing multiple 1-D Fourier trans-
forms (for ramp filtering) with a single 2-D Fourier transform
(for ramp filtering combined with the window function).

Note that for differential CT our approach of using a
2-D window function is more powerful than the conventional
approach of using a radial window function combined with
increasing the slice thickness, because the implicit frequency
response of this approach is linearly separable in ρr and
ρz, which is not optimal for the Noise Power Spectrum
encountered in differential CT.



III. EXPERIMENTS & RESULTS

Before evaluating the proposed window function, we simu-
lated Noise Power Spectra for all configurations and compared
them with their analytic representations. They were in good
agreement but are omitted in this paper due to space con-
straints.

For evaluating the proposed window function, we performed
reconstruction of a modified version of the FORBILD head
phantom onto a 5123 grid with voxel size 0.5cm3. Recon-
struction parameters were selected to match our assumption of
a parallel beam geometry, rectangular apodization, and linear
interpolation. The angular increment was 0.5◦ to avoid angular
undersampling. Projection images were of size 730 × 512
pixels with a pixel size identical to the voxel size. Projections
were corrupted with additive white Gaussian noise. Recon-
struction was performed once without and with the proposed
window function.

Defining the window function requires knowledge of the
Noise Power Spectrum and the Object Power Spectrum. For
the Noise Power Spectrum, we used the analytic definition.
The Object Power Spectrum needs to estimated. To this end,
we assumed a spherically symmetric Power Spectrum which
decays exponentially towards high frequencies. We model this
power spectrum as:

Ô(ρr, ρz) = a · xb, x =
√
ρ2r + ρ2z . (8)

The model parameters a and b are estimated from the head
phantom.1

Results of the evaluation with the peak signal-to-noise
ratio (PSNR) are shown in Fig. 2. Applying the proposed
window reduces reconstruction error for all approaches, and
yields a more even residual noise texture.

The reconstruction obtained with z-sensitivity benefits most
from denoising, due to the high amount of noise. Still, it suffers
from a poor signal-to-noise ratio which renders the resulting
images unusable.

The second most benefit can be observed in the non-
differential reconstruction. We attribute this to the low overlap
between Noise Power Spectrum and Object Power Spectrum.
Here, our window shows the well-known tradeoff between
resolution and noise in conventional CT.

The least benefit is observed for the reconstruction using
two sensitivity axes. This can again be attributed to the overlap
between Noise Power Spectrum and Object Power Spectrum.
Here the overlap is high, since both spectra are strongest in
the low frequencies.

Reconstruction using the standard approach with radial
sensitivity yields a higher PSNR than the bi-directional ap-
proach after applying the window function, while its PSNR
is lower when no window is used. We attribute this to the
noise structure of this approach, which can relatively easily
be attenuated by frequency adaptive smoothing in z-direction
that is strong at low radial frequencies, and decays towards
higher radial frequencies.

1Strictly speaking, this step violates the guidelines for proper parameter
selection. However, we argue that if the shape of the Noise Power Spectrum
is known, the Object Power Spectrum could also be estimated from the noisy
reconstruction, yielding possibly even better performance.

IV. CONCLUSIONS

We have investigated the noise behavior of CT recon-
struction from directional differential projections. Our experi-
ments indicate that reconstructions from differential projecti-
ons in z-direction suffer from high noise and are unusable
in practice. This leads to a design conflict, as dark-field
reconstruction can benefit from this configuration.

Reconstruction from two directional derivatives yields a
more even noise texture than the standard radial approach.
However, our experiments indicate that this can be mitigated
by choosing an appropriate reconstruction window for the
radial direction. We will investigate this finding in further
studies.

Our investigation yields many directions for other future
work. We plan to further investigate the shape of our win-
dow function for the different configurations, and to quantify
the gain in reconstruction quality depending on the overlap
between Object and Noise Power Spectrum. Additionally, we
are interested in the implication of our findings for designing
regularizers for iterative phase-contrast CT reconstruction.
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