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Abstract

Cone-beam rotational angiography enables 3D imaging of the hepatic vasculature and is considered beneficial for guidance of

transcatheter arterial chemoembolization procedures. Respiratory motion during the rotational acquisition challenges state-of-the-

art reconstruction algorithms as intra-scan motion leads to inconsistencies causing substantial blurring and streaking artifacts in

uncompensated reconstructions, suggesting the need for motion correction.

We propose an automated method for respiratory motion estimation and compensation based on registration of an initial 3D arterial

model to vesselness enhanced 2D projection images. Centerline points of the arterial tree are modeled as B-splines over time, the

control point positions of which are optimized using -expansion moves on graph cuts. This approach naturally allows for the

estimation of 3D rigid translations as well as non-rigid deformations.

Applied to a pre-clinical and a clinical acquisition, the proposed methods resulted in notable reductions in reprojection error and

increased vessel sharpness that are reflected in less streaking and blurring artifact compared to the uncompensated case, implying

superior vessel contrast. As the proposed methods are generic, future work will investigate their applicability to related rotational

angiography imaging protocols, such as coronary angiography.
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1. Introduction

Transcatheter arterial chemoembolization (TACE) is a mi-

nimally invasive, catheter-based bridge therapy for hepatocel-

lular carcinoma [1] and metastatic liver tumors [2, 3]. TACE

relies on intra-arterial injection of small particles, such as ethi-5

odized oil, cancer medication or gold particles, to artificially

occlude vessels that feed the tumor with oxygenated blood [4].

Consequently, accurate knowledge of feeding vessels is key for

successful treatment [3, 5]. These vessels are traditionally iden-

tified based on 2D fluoroscopy images, i. e., digital subtraction10

angiography (DSA) [3], that are acquired with interventional

C-arm angiography systems. Unfortunately, 2D images su er

from the e ects of projective simplification, such as foreshorte-

ning and overlapping, that complicate diagnostic assessment.

Modern C-arm scanners, however, are motorized and allow for15

the acquisition of multiple fluoroscopy images while the X-ray

source and detector rotate on a circular orbit around the pa-

tient [6]. During X-ray acquisition, the vasculature is selecti-

vely contrasted by intra-luminal injection of a contrast agent.

This imaging protocol is commonly referred to as cone-beam20

CT (CBCT) or rotational angiography and allows for 3D recon-

struction of the vascular anatomy. Clinical studies comparing

CBCT to DSA for identifying feeding vessels suggest that pro-

viding physicians with the accurate 3D vascular anatomy is po-
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tentially beneficial [5, 7, 8].25

However, obtaining high quality reconstructions of the hepa-

tic vasculature from rotational angiography is still challenging

due to intra-scan motion that leads to image artifacts in the re-

constructed 3D image volumes. The liver is strongly a ected

by respiratory motion due to its anatomical proximity to the30

diaphragm that drives diaphragmatic breathing. Hepatic mo-

tion due to respiration is largest along the cranial-caudal patient

axis (5 – 25 mm) but has components in anterior-posterior (1 –

12 mm) and in left-right (1 – 3 mm) direction [9].

A common way to circumvent intra-scan respiratory motion is35

requiring patients to hold their breath [10, 11, 12]. Due to the

relatively long acquisition time of about 6 s for a single CBCT

scan, residual respiratory motion from imperfect breath-hold is

a common corruption mechanism that leads to double edges,

streaking, and blurring in uncompensated 3D reconstructions.40

Consequently, motion correction strategies have to be devised

to achieve acceptable image quality.

In literature, many approaches are known that seek to assign

motion phases to the acquired images. Assuming that multi-

ple respiration cycles are observed, the phase information can45

be used to extract consistent images, so-called bins or gates,

that are input to 3D reconstruction algorithms. The phase as-

signment can be performed using external devices [13], such as

respiration belts [14]. However, this requires the use of additio-

nal equipment that has to be synchronized to the acquired data.50

To overcome this limitation, other approaches extract surrogate

signals from the acquired projection images directly. These ap-



proaches usually exploit that diaphragm motion is highly corre-

lated with respiratory motion [9, 15]. Sonke et al. [16] use the

Amsterdam shroud to derive a surrogate signal by horizontally55

aligning the diaphragm position in all images. These approa-

ches are elegant, as they avoid explicit motion compensation.

Unfortunately, they are not applicable in CBCT angiography

since the observed motion patterns are not periodic. When mo-

tion compensation is applied, the diaphragm position can be60

used to directly estimate respiratory motion of the liver. This

course of action is particularly well suited for the upper parts

of the liver and motion estimation along the cranial-caudal di-

rection [15]. In an animal model, Schäfer et al. show that

compensation using the projection domain diaphragm displa-65

cement is possible. The method handles large displacements

but requires sophisticated segmentation of the 3D anatomy, i. e.

the ribcage and the diaphragm, in an uncompensated recon-

struction [17]. Bögel et al. [18] automatically track the di-

aphragm contour in the projection image sequence and use a70

motion-corrected triangulation approach on the diaphragm ver-

tex to estimate 3D motion patterns via thin-plate-spline interpo-

lation that are used to compensate for respiratory motion. While

this method does not require segmentation in 3D, the estimated

motion is valid only within a narrow target region around the75

diaphragm. More recent, Sindel et al. [19] extended this ap-

proach by tracking not only the motion of the diaphragm but

also a vessel bifurcation to achieve a more reliable motion es-

timation within the liver. Whilst achieving substantial impro-

vements in reconstruction image quality, the method requires80

manual tracking of the bifurcation over the complete sequence,

making its application cumbersome and time consuming.

2. Materials and Methods

In this work, we propose a novel method to compensate for

residual respiratory motion in rotational angiography acquisiti-85

ons. The main contribution of our method is a 2D 3D registra-

tion of the contrasted hepatic vasculature. To this end, the 3D

vessel tree, extracted from an uncompensated reconstruction,

is forward projected and registered to the 2D projection ima-

ges. Motion is expressed using a B-spline-based motion model,90

which is able to account for both rigid translational and non-

rigid motion. We evaluate the method on two datasets: a por-

cine model and a clinically acquired dataset. Evaluation is per-

formed qualitatively and quantitatively, using the reprojection

error as well as the vessel sharpness.95

An overview over the proposed method is shown in Figure 1.

The algorithm uses the stack of acquired projections of the con-

trast enhanced hepatic vasculature that contains intra-scan mo-

tion. Before starting the motion estimation using 2D 3D regis-

tration, the projection data has to be preprocessed. To this end,100

the 2D images are reconstructed in a first step in order to obtain

a motion-corrupted reconstruction (Step 1). Afterwards, the 3D

vessel tree is segmented from this volume (Step 2) and pro-

jected onto the 2D images to define the vessel regions. Within

these regions, we apply vessel enhancing filters to the acquired105

2D projection images (Step 3). Finally, motion is estimated by

registration of the 3D vessel tree to the 2D vessel maps (Step

4), yielding the intra-scan motion estimate. By incorporation of

this estimate in the reconstruction, a motion-compensated re-

construction is obtained (Step 5).110

Step 1

Mo�on Corrupted Reconstruc�on

Contrast Enhanced Projec�ons Mo�on Corrupted Volume

Step 3
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Mo�on Es�ma�on
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Figure 1: Illustration of the processing pipeline for respiratory motion-

compensated 3D reconstruction.

2.1. Data

The data used in this work are from a rotational cone-beam

C-arm angiography acquisition. In such a setup, the X-ray

source and detector are mounted on a C-shaped gantry that rota-

tes around the patient on a circular trajectory. While acquiring115

projection images of the liver from di erent angles an iodine-

based contrast agent is injected into the hepatic vasculature that

selectively contrasts the vessel lumen.

In this work, two sequences were acquired using the same ima-

ging protocol that consist of 396 projection images acquired120

over 200 on a circular source trajectory over approximately

6 s. Each projection image has 620 480 pixels with an isotro-

pic pixel size of 0 616 mm. During acquisition, contrast agent

was injected with a power injector (Medtron, Saarbrücken, Ger-

many) into the hepatic artery. All reconstructions are performed125

on a voxel grid of 448 448 448 voxels with an isotropic voxel

size of 0 5 mm.
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The first dataset (D1) is taken from an animal study on a por-

cine model. This dataset shows substantial respiratory motion

that is also observable in projection domain. The second data-130

set (D2) shows a clinical dataset scanned during breath-hold. In

this case, we observe residual respiratory motion only that still

decreases image quality and diagnostic value.

2.2. Motion-corrupted Reconstruction

In the first step, an uncompensated and thus motion-corrupted135

3D reconstruction is performed that still contains artifacts since

intra-scan motion is not compensated for. Reconstruction is

achieved using the well-known Feldkamp-Davis-Kress algorithm

(FDK), an approximate filtered back-projection type inversion

algorithm to the X-ray transform [20]. This algorithm first fil-140

ters the projection images and then back-projects them to the

3D domain. To this end, each projection image is filtered with

a cosine filter [6], multiplied with Parker redundancy weig-

hts [21], and finally ramp filtered row-wise. These filtered ima-

ges are then back-projected along the known cone-beam geo-145

metry. We use an implementation similar to Scherl et al. [22]

that speeds up the filtering and back-projection steps by paral-

lelizing the algorithm. The reconstructed 3D image then serves

as input to vessel segmentation in 3D.

2.3. Vessel Segmentation in 3D150

In the motion-corrupted 3D reconstruction, the vessel tree

has to be segmented (cf. Figure 1, Step 2). The vessel seg-

mentation in 3D is based on two processing steps: at first, the

vessels are enhanced using common vessel enhancement filte-

ring. This results in a pixel wise response in the images that155

contain the possibility of being a vessel. In a following seg-

mentation step a connected vessel tree is extracted. These two

steps are described briefly in the following.

Vessel Enhancement. Contrasted vessels appear as narrow tu-

bular structures that are bright with respect to the background.160

A common approach to enhancing structures that exhibit this

property is based on an Eigenvalue analysis of the Hessian ma-

trix. To obtain consistent enhancement over a wide range of

vessel sizes multi-scale filtering has been found beneficial. The

idea behind multi-scale image analysis is to transform the ori-165

ginal image into a set of derived images by convolution with

Gaussian kernels of increasing standard deviation. Consequently,

lower and higher scales are useful for the detection of tubular

structures with smaller and larger diameters, respectively [23,

24]. The results of di erent scales are then merged to the fi-170

nal filter result using a maximum operation. The result of this

operation is a vesselness response. This can be implemented in

2D as well as in 3D. See [25, 26, 27] for implementation details.

Vessel segmentation. The resulting vesselness response map is175

then used to extract a connected graph that represents the 3D

vessel tree. We use region growing based on the fast marching

algorithm [28, 29] to extract the centerlines via back-tracking

[30]. Within the fast marching step, time values are assigned

to all nodes that depend on the choice of speed function and180

root node. Note, that we used the inverse of the vesselness re-

sponse as the speed function. This is because we consider ves-

sel centerlines to be cheapest paths, but the vesselness response

according to Sato et al. [31] is highest for points likely to cor-

respond to a vessel and low for the background. Then, the root185

node is selected as the point with minimal speed, i. e. maximal

vesselness response, that is considered to lie on the vessel tree

or the inflow catheter. The cost of each node is then updated

during fast marching. The value of a particular node depends

on all neighborhood node values and can be understood as the190

time necessary to reach this node within the graph. See [29, 30]

for more implementation details. The correct endpoints of ves-

sels are not known, however, endpoint candidates for all ex-

tractable vessel segments can be estimated during the forward

pass. From all possible end points, backtracking is performed195

towards the root node to extract candidate vessels path. As the

resulting centerline tree may still contain erroneous branches,

we prune branches that are shorter than a heuristically defined

threshold (set to 5.0 mm). Finally, we are left with a linked set

of 3D points that represents the hepatic artery tree and inflow200

catheter.

2.4. Vessel Enhancement 2D

For the 2D 3D registration, the vessels in the 2D projection

have to be enhanced as well (cf. Figure 1, Step 3). To this end,

the already segmented 3D vessel tree is used to define the vessel205

regions in 2D by forward projecting the bounding box of the 3D

vessel tree. Then, the vessel enhancement filter is only applied

within these regions. The same vesselness filter by Sato et al.

[31] is utilized to enhance vessels in the 2D projection images.

As the final result, we obtain the vessel enhanced images that210

store, at every pixel, the inverse of the vesselness response.

2.5. 2D 3D Registration

In order to estimate intra-scan respiratory motion, a 2D 3D

registration of the 3D vessel tree to the 2D vesselness enhanced

projection images is used (cf. Figure 1, Step 4). To this end,215

the 3D vessel tree is projected under the influence of a motion

model onto the 2D enhanced projection image. We accumulate

the inverse of the vesselness response and use this as the qua-

lity measure in the objective function. This principle is shown

schematically in Figure 2. In the following paragraphs, this re-220

gistration is described in more detail: we start by explaining our

motion model based on B-splines, which is able to account for

non-rigid or translational motion. Afterwards, we describe the

objective function used to assess the quality of a motion mo-

del estimate. Finally, we provide further insight in optimization225

and implementation details.

Motion Models. We investigate two motion models to estimate

respiratory motion, namely rigid 3D translational and non-rigid

motion. Rather than optimizing for the absolute 3D positions

of centerline points at a particular time frame, we optimize for230

a relative shift from the initial position that is extracted from

the uncompensated reconstruction. In this framework, rigid 3D

translations are di erent from free-form deformations only in

3



the constraint that all points exhibit the same, global, displace-

ment.235

Non-rigid Motion Model: 3D translational motion is com-

pounded by displacements in cranial-caudal, anterior-posterior,

and in left-right direction corresponding to shifts along the ex,

ey, and ez direction, respectively. Displacements in these di-

rections due to respiratory motion are expected to be smooth240

over time. Consequently, rather than estimating a displace-

ment vector for each of the K projection images independently,

shifts for a particular image are sampled from a B-spline. This

concept has also been applied recently in di erent applicati-

ons [32, 33]. Sampling on B-splines has the advantage that the245

dimensionality of the problem decreases and furthermore the

estimated motion is smooth. Moreover, the number of parame-

ters does not depend on the amount of acquired images but on

the number of control points used for the spline.

The displacement t
j

i
R

3 for centerline point j and image

i arises from interpolating a 3D spline at the normalized time

point i K. It is given by

t
j

i
( )

A

a 1

j
a Ba d

i

K
(1)

where Ba d are the B-spline basis functions of degree d. Mo-250

reover, j j 1 N
j
a j 1 N a 1 A

is the comprehensive set of control points, where j j
a

R
3 a 1 A , again, is a set of A control points, the position

of which determines the displacements over the projection se-

quence for centerline point j. Finally, we introduce ( )255

t
j

i
( ) i 1 K j 1 N that contains the displacements for

all 3D centerline points p j to every time point i. The number of

displacements that have to be recovered to determine the over-

all non-rigid motion of the vessel tree is N A.

260

Figure 2: Schematic overview of 2D 3D registration where we show the nota-

tion exemplary for a single point: A 3D centerline point p j (blue) is forward

projected into view i. Optimization of Equation 2 yields 3D displacements t
j

i
(green) for every centerline point such that the projection of the displaced 3D

centerline is in agreement with the observed and vesselness filtered image Vi.

Rigid Translational Motion Model: A rigid 3D translational

displacement of the complete vasculature follows immediately

from the above formulation of non-rigid deformation of the 3D

vessel tree. For rigid translational motion, the control point po-

sitions j are the same for every centerline point j such that a265

single B-spline is su cient to describe this global motion. In

that case, the number of control point displacements that need

to be estimated reduces substantially from N A to A.

Objective Function. Now we can define the objective function

with the following inputs: a stack of 2D vessel maps, the cor-

responding 3D vessel tree, and one of the motion models des-

cribed above. Given a particular configuration of control points

that describes the overall displacements ( ), the target

energy function E( ) assessing the quality of the current esti-

mate is defined as:

E( ) Edata( ) Esmooth( ) (2)

where Edata( ) enforces data fidelity and Esmooth( ) encodes

neighborhood constraints.

The data fidelity term is derived from the reprojection of the 3D

model onto the enhanced projections:

Edata( )

K

i 1

N

j 1

Vi(u
i
j( ))

p
j

i
p j t

j

i
( ) (3)

ui
j( ) h(Pi p

j

j
)

where Vi are the vesselness filtered 2D projections and Pi

R
3 4 is the projection matrix for frame i that describes the pro-

jective mapping from 3D coordinate system to 2D image coor-

dinates. We use underline notation to denote representation in

homogeneous coordinates and define function h( ) that reverses

this mapping.

Control points that are close both spatially and temporally are

expected to move similarly. The spatial component of this con-

straint is not meaningful in the purely translational case, but

promotes preservation of local topology when non-rigid defor-

mations are considered. It reads:

Esmooth( )

(
j
a

l
b
)

j
a

l
b 2 (4)

where 2 is the l2-norm, and is the set of neighboring pairs

of control points. Spatial and temporal regularization is achie-270

ved by adding control point pairs (
j
a

l
a) over the complete

sequence a 1 A if the distance between the corresponding

centerline points p j and pl, respectively, is below 5 0 mm.

For optimization of the motion model, it is crucial to assess

changes in total energy E due to displacement of a particular275

control point
j
a . To this end, we introduce

j
a to de-

note with all elements held constant except for
j
a. Then,

the energy at the new configuration is computed according to

Equation 2 as E(
j
a ).

Optimization. Gradient- and grid search-based optimization of

Equation 2 is, in general, impractical due to the complex shape

and high-dimensional domain of the target function, respecti-

vely. However, when exchanging continuous control point lo-

cations
j
a with discrete candidates (

j
a) f , Equation 2 takes a

form that can be optimized e ciently using the -expansion

algorithm [34]. Rather than directly obtaining optimal control
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point positions that minimize the energy, we recover a labeling

f ( f1 fM) , where M K A for non-rigid and M A

for the translational motion model, respectively, that is optimal

with respect to Equation 2.

At one iteration of the algorithm for all candidate labels

1 F we seek to find f̂ such that

f̂ arg min
f

E( f ) (5)

where f̂ is within one -expansion of the current labeling f . As280

for particular control points (
j
a) f the label f either changes to

or stays the same, each move is essentially a partitioning pro-

blem that is solved using a graph cut. A comprehensive descrip-

tion of the algorithm can be found in [35, 34]. It is worth men-

tioning that a single expansion move requires M cost function285

evaluations (assuming that the current value was stored). Howe-

ver, these evaluations can be parallelized e ciently as changes

to a particular control point are evaluated independently from

the others.

Implementation Details. The -expansion algorithm traverses290

the discretized space and accepts updates that reduce the to-

tal energy. Consequently, shifts that yield improvement must

lie within the capture range of the optimizer, suggesting that

the considered label space must be su ciently large. To allow

for large motion amplitudes while preserving details, we ap-295

ply optimization on multiple scales by increasing the number

of control points. For rigid motion, displacements are initia-

lized to yield zero shift. Optimization is applied on two sca-

les having 3 and 6 control points each. Shifts are discretized

within a cube of 3 mm3 3 mm3 3 mm3. Optimization for300

non-rigid deformations is initialized with the purely translatio-

nal estimate. Optimization is performed on a single resolution

level with 6 control points expressing deformation over time.

As smaller displacements are expected, the discrete samples lie

within a cube of 1 mm3 1 mm3 1 mm3 with 5 5 5 sam-305

ples in each direction. Clamped quadratic B-splines in uniform

parameterization were used.

2.6. Motion-compensated Reconstruction

In the last step (cf. Figure 1, Step 5), the motion estimate

is used and incorporated into the reconstruction step. Depen-310

ding on the selected motion model, the compensation step is

di erent.

Compensation with the Rigid Translational Motion Model. As

the estimated motion is global, it can be conveniently integra-

ted into the projection matrices Pi R
3 4 that describe the pro-

jective mapping from 3D coordinate system to 2D image coor-

dinates of the i-th frame. A motion-compensated version of the

projection matrix can then be obtained by

P
comp

i
Pi Ti Pi

Ri ti
0 1

(6)

This formulation, in principle, allows for 3D rotations R R
3 3

and translations t R
3. In the presented case where only

translations are considered, Ri R 13 is the 3D identity315

mapping. These updated matrices are then used for motion-

compensated reconstruction as described for the uncompensa-

ted reconstruction in Step 1.

Compensation with the Non-rigid Motion Model. The non-rigid

motion estimation by the algorithm devised above is local and,320

hence, cannot be integrated into the projection geometry di-

rectly. Consequently, we use an approach similar to Schäfer

et al. [36] that is a voxel-driven, back-projection type algo-

rithm that uses a dense displacement vector field to compensate

for motion during reconstruction. Consequently, similar to the325

uncompensated and rigid motion-compensated reconstruction

algorithms, it operates on the pre-filtered projection images.

As mentioned before, displacement vectors are only known at

a very limited number of sample positions that correspond to

the vascular tree. This information is too sparse to be used for330

reconstruction and has to be interpolated to accommodate the

complete volume of interest. This interpolation is achieved via

3D thin-plate-spline (TPS) warping, that has previously been

found beneficial for similar tasks [18, 37, 38]. To constrain the

deformation outside the estimated region, we added the corners335

of the 3D bounding box of the vessel tree to the control points

and assigned a zero-displacement.

The displacement fields obtained via TPS interpolation di(x) are

then integrated into the back-projection algorithm by updating

the 3D positions prior to projection. As for the optimization340

of non-rigid motion, we use the translational motion corrected

matrices for the reconstruction.

3. Experiments and Results

3.1. Evaluation Methodology

We evaluate the results of the rigid translational and the345

non-rigid motion estimation algorithms both qualitatively and

quantitatively. For qualitative evaluation, representative slices

of the uncompensated and both compensated reconstructions

are selected by medical imaging experts and visually compared

regarding vessel visibility and sharpness.350

For quantitative evaluation, we computed the reprojection

error of the reconstructed 3D vessel tree. The reprojection er-

ror measures the distance of a projected 3D point to the closest

observed 2D points in that view [27]. In our case, we mea-

sure the distance between the projection of a 3D point of the355

vessel tree to the closest observation on the 2D detector image

that belongs to the 2D vessel centerline. As the true 2D center-

line is not known, we manually annotated the 2D vessel center-

lines in 10 projection images, which were selected uniformly

from the projection stack, to serve as the reference standard.360

The mean and maximum reprojection errors are then computed

by accumulating the mean and maximum error over all views

for each 3D centerline point. As a second quantitative mea-

sure, we use vessel sharpness available in the CoroEval frame-

work [39]. Put concisely, vessel sharpness measures the con-365

trast of bright tubular structures. We use the CoroEval tool

to compute vessel sharpness along the common and right he-

patic artery. We expect lower vessel sharpness measures for
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Qualitative results for dataset (D1) showing the porcine model. Figure 3(a-c) and (e-f) show corresponding slices of a 3D volume reconstructed using

an uncompensated geometry in (a,e), and the translational and non-rigid motion-compensated geometry in (b,f) and (c,g), respectively. Further, Figure 3(d,h) show

magnifications of the regions of interest (ROIs) that are highlighted by colored boxes. The images are shown in a HU window ranging from [-500, 500] while the

crops to the ROI are shown in a narrower window [-400, 300].

uncompensated, motion-corrupted reconstructions where intra-

scan motion degrades image quality and higher vessel sharp-370

ness values for motion-compensated reconstructions. The ves-

sel sharpness ranges between 0 % and 100 % with higher values

indicating better performance. It is worth mentioning that, as

the magnitude of the measure depends on both vessel sharpness

and the contrast level, a comparison of sharpness values bet-375

ween di erent datasets do not necessarily allow for conclusions

about reconstruction performance as the contrast level may be

di erent.

We then assess these measurements on (a) the uncompensated

extracted centerline tree, (b) the vessel tree after translational380

correction, and (c) after correction for translational and non-

rigid motion.

3.2. Results

For qualitative evaluation of the results, representative sli-

ces in reconstructed volumes that were obtained using the un-385

compensated and motion-compensated tomographic reconstruction

are shown in Figure 3 and Figure 4 for the first (D1) and se-

cond (D2) dataset, respectively. Reconstructed volumes were

scaled to obtain intensity values in the conventional Hounsfield

Units (HU) range [40]. However, due to severe cupping arti-390

facts resulting from scatter and lateral truncation, the HU va-

lues stated in Figure 3 and Figure 4 are only approximate [41].

A wide window was used for the full field of view while the

magnified regions of interest (ROIs) are shown with a narrow

window to better appreciate the e ects of motion compensa-395

tion.

Improvements in reconstruction quality are observable for the

compensated reconstructions that present as a reduction of stre-

aking artifacts and an increase in vessel sharpness. As expected,

the improvements are more pronounced for D1 due to a higher400

level of intra-scan motion. We use red arrows in the magnified

ROIs to highlight areas where aforementioned improvements

can be appreciated.

The above observations are also reflected in the mean and maxi-

mum reprojection errors for the uncompensated as well as both405

motion-compensated scenarios that are shown in Table 1 For

D1, the averaged 2D mean (maximum) reprojection error for

the uncompensated reconstruction reduced by 7 2 % (10 2 %)

when translational and by 14 4 % (15 9 %) when non-rigid mo-

tion compensation was used, respectively. When considering410

D2, the same figures of merit improved by 0 7 % (2 0 %) and

3 9 % (6 4 %) when translational and deformable motion com-

pensation was applied.

Results of the quantitative vessel sharpness assessment along

the common and right hepatic artery are presented in Table 2.415

We observe larger improvements for D1 compared to D2 with

non-rigid motion compensation outperforming the translatio-

nal motion compensation and uncompensated reconstruction in

both cases. These observations are in very good agreement with

both the qualitative assessment as well as the reprojection errors420

reported above.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Qualitative results for dataset (D2) that shows reconstructions of a patient: The images show the (a,e) uncompensated, (b,g) the rigidly motion-

compensated, and (c,f) the non-rigidly motion-compensated reconstruction. Images in (d,h) are zooms to ROIs highlighted as colored boxes. The images are

shown in a HU window ranging from [-600,1000] while the crops are in a narrower window [-300, 900].

Table 1: Averaged mean and maximum reprojection error for the uncompensa-

ted geometry, and the updated geometry that was corrected for 3D translational

and non-rigid motion, respectively.

Error [mm] D1 D2

Uncompensated
Mean 1 53 0 72 1 54 0 60

Maximum 3 84 2 42 3 46 2 01

Rigid
Mean 1 42 0 71 1 53 0 59

Maximum 3 45 2 16 3 39 1 96

Non-rigid
Mean 1 31 0 70 1 48 0 50

Maximum 3 23 2 04 3 24 1 83

Table 2: Vessel sharpness along the common and right hepatic artery computed

using the CoroEval framework [39]. Higher values correspond to increased

contrast and improved vessel sharpness.

D1 D2

Uncompensated 23 % 41 %

Rigid 25 % 41 %

Non-rigid 28 % 42 %

4. Discussion

As mentioned previously, we observed more substantial im-

provements for the first (D1) than for the second dataset (D2).

The dominant reason is that the corruption due to respiratory425

motion is more severe in D1 compared to D2. This line of ar-

gumentation is supported by the observation that purely trans-

lational motion compensation only marginally improved the re-

projection error for D2, while it had a notable impact on the

reprojection error for D1.430

The overall magnitude of vessel sharpness is lower for D1 com-

pared to D2 suggesting lower vessel contrast that is also re-

flected in the HU windows used for display in Figure 3 and

Figure 4, respectively.

We noticed a delayed contrast bolus injection in dataset D2 such435

that the arterial tree is not fully visible in the first projections of

the sequence. This introduces additional streaking artifact [42]

that cannot be compensated for by the proposed methods that

address inconsistencies due to intra-scan motion only.

From Figure 3 and Figure 4 it becomes apparent that, despite440

the quantitative improvements of the translational compensa-

tion, notable reduction of streaking artifacts as well as impro-

ved vessel sharpness and separation is only achieved when non-

rigid motion is considered. Our formulation of motion, in which

every 3D centerline point is considered as a B-spline over time,445

naturally accounts for translational and rigid motion. Yet, inter-

mediate motion models, such as a ne transformations, paired

with stochastic gradient descent optimization [43] could be in-

vestigated in future work.

The proposed methods rely on registration of a 3D vascula-450

ture model, which is extracted from an uncompensated recon-

struction, to the vesselness enhanced 2D projection images. Con-

sequently, the estimated motion reliably reflects artery motion

only at centerline points suggesting that the extracted 3D vessel

tree ideally contains all contrasted vessels. In presence of sub-455

stantial corruption by high-amplitude respiratory motion and
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thus artifact, an uncompensated reconstruction may not allow

for the extraction of 3D artery centerlines of su cient quality

particularly in regions close to the diaphragm where respiratory

motion is strongest. In such scenarios, an iterative scheme of460

the proposed method is conceivable where the 3D vessel tree is

refined with increasingly reliable motion estimates.

The quantitative measures reported here are relative as they do

not only account for inconsistencies due to intra-scan motion

but are also a ected by (a) incorrectly extracted 3D center-465

line branches and (b) the quality of the manually annotated 2D

ground-truth. Erroneously extracted branches in 3D result in a

systematic o set of the reprojection error, while small deviati-

ons in centerline annotation yield statistic fluctuations. More

importantly, the maximal response of the vessel enhancing fil-470

ters, and thus the target of the proposed 2D 3D registration, is

not guaranteed to coincide with the true vessel centerline that is

estimated during manual annotation. Consequently, these sour-

ces of error impose a fundamental lower bound on the repro-

jection error used for assessment.475

The current evaluation is limited to two datasets and it needs

to be evaluated how well our findings generalize to a larger

population. However, the proposed formulation of fully auto-

matic deformable motion estimation and compensation may be

of broader interest, e. g., in coronary angiography where rigid480

2D 3D registration of prior models to the acquired image se-

quence is part of the state-of-the-art [44, 45].

5. Conclusions

We proposed automated methods for translational and non-

rigid respiratory motion compensation in cone-beam rotational485

hepatic angiography. The methods are based on registration of

the 3D vascular tree that is extracted from an uncompensated re-

construction to vessel enhanced versions of the projection ima-

ges. We found improvements in image quality that, qualitati-

vely, lead to fewer streaking artifacts and better vessel contrast,490

and, quantitatively, to a reduction of both mean and maximum

reprojection error as well as increased vessel sharpness.

Intra-scan respiratory motion estimation remains a challen-

ging problem in cone-beam rotational angiography as it is low

frequency but potentially of high amplitude. Consequently, fu-495

ture work will focus on deriving motion correction algorithms

that do not require initial 3D models but exploit image-based

data corruption metrics, such as consistency conditions or auto-

focus measures.
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