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Abstract. Tumor diagnostics are based on histopathological assessments
of tissue biopsies of the suspected carcinogen region. One standard task
in histopathology is counting of mitotic cells, a task that provides great
potential to be improved in speed, accuracy and reproducability. The ad-
vent of deep learning methods brought a significant increase in precision
of algorithmic detection methods, yet it is dependent on the availability
of large amounts of data, completely capturing the natural variability
in the material. Fully segmented images are provided by the MITOS
dataset with 300 mitotic events. The ICPR2012 dataset provides 326
mitotic cells and in AMIDA2014 dataset, 550 mitotic cells for training
and 533 for testing. In contrast to these datasets, a dataset with high
number of mitotic events is missing. For this, either one of two patholo-
gist annotated at least 10 thousand cell images for cells of the type mi-
tosis, eosinophilic granulocyte and normal tumor cell from canine mast
cell tumor whole-slide images, exceeding all publicly available data sets
by approximately one order of magnitude. We tested performance using
a standard CNN approach and found accuracies of up to 0.93.

1 Introduction

The number of mitotic figures within a certain area is an important character-
istic in tumor grading. Mitotic cell count is a valuable predictor, correlating
highly with tumor proliferation [1]. Most of the histopathological grading sys-
tems require the number of mitotic figures within a defined area (high power
field, HPF). However, this area is not defined uniquely [2]. If the number of
mitotic figures exceeds a defined limit within ten consecutive HPFs, the grading
of the tumor may change. However, this makes a clear distinction of different
grades of illness highly questionable. The consensus among different patholo-
gists in grading was evaluated in [3], revealing an inter-oberver discordance in
50% of the cases. As a reason, the high subjectivity of the pathologists and the
flexibility in the choice of the high power fields is reported. In order to counter-
act these obstacles, computer-aided methods for detecting mitotic figures were
taken into account. This process can be clustered into two main tasks. First
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of all, the detection of cells and at second, the classification of the cells found.
The hosts of competitions to detect mitotic cells prepared datasets for this tasks.
The ICPR2012 dataset provides 326 mitotic events in fully segmented images.
In the AMIDA2014 dataset, 550 mitotic cells for training and 533 events for
testing can be found. The MITOS dataset provides about 300 mitotic figures.
However, it can be questioned if this amount of training data is sufficient to train
accurate classifiers. It is known that mitosis can be distinguished into four dif-
ferent phases, each phase results in high variance in their visual representation.
This work focuses on the classification task of the cells not on detection. Due to
that a dataset with more than 12000 mitotic cells, 17000 tumor cells and 10000
granulocytes is provided by our dataset. These figures have been extracted by
manually reviewing 100000 histological image sections of stained canine mast cell
tumors. In order to prove the demand for such a dataset, a simple deep learning
approach is trained and evaluated with respect to all its parameters and with
respect to the modifications of the input data. To provide the correctness of the
data, the cells have been annotated by pathologists.

2 Related work

In [4] a multitask learning approach is presented which is able to detect mitotic
events. A deep learning architecture similar to [5] was used. This method
achieved an F-score of 0.53 across 550 mitotic events in comparison to an F-
score of 0.90 for 3064 lymphatic cells. The detection rate of all cells was 98%.
Malon et al. [6] used the same architecture as used in this work achieved an
F-score of 0.65 on the MITOS dataset. As input 72 x 72 cell patches were used.
Handcrafted features like morphology and run length features were extracted
on blue ration images. The method introduced in [7] makes use of a pixel-wise
sliding window approach. Based on that, pixels were considered as true positive
if a single pixel was in a specific range around a mitotic figure. Furthermore,
images around the mitotic figures were cropped and the network was trained.
The architecture consists of five 2 x 2 convolutional layers followed by 2 x 2 max
pooling layers and two fully connected output layers. This process needs a total
of 31 seconds per patch and eight minutes per HPF. The achieved F-score was
0.782. A second approach with a reduced depth of three convolutional layers
resulted in an F-score of 0.758. This network was eight times faster than the
original method. Albarqouini et al. [8] came up with a special type of network
that is able process two types of input data. First of all, ground truth data
from established datasets like ICPR2012, MITOS or AMIDA are used. The
second type of data was obtained using crowd sourcing layers. These layers
incorporate annotations of non-professionals. Doing this needed some sort of
reliability measurement which is why an expectation maximization algorithm is
used to do some weighting. The authors revealed an improvement of 0.36 in the
best and 0.068 in the worst case. The best F score was 0.76. Chen et al. [9] used
another deep learning approach that made use of fully convolutional networks
in order to detect mitotic candidates. Therefore, a probability map of the input
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is obtained yielding high values for mitotic candidates. This net was trained on
94 x 94 input images. However, since the spatial information is preserved, the
network is able to detect mitotic candidates. These candidates are then fed into a
convolutional network with a fully connected output layer for classification. A F
score of 0.785 was archieved by this cascaded pipeline. Moreover, the pipeline is
able to predict a 2000 x 2000 input image within 0.49 seconds using a NVIDIA
GeForce GTX Titan GPU. All current deep learning approaches made us of
augmentation due to the fact that they require a comparatively large amount of
training data. This is obvious since deep learning requires a comparatively large
amount of training data.

3 Material and methods

3.1 Dataset

The dataset was acquired using a semi-automatic annotation GUI. Therefore, the
whole slide images are processed using the openslide software [10] and manually
cropped by simply clicking at cells. The position of the midpoint for a single
cell was saved. In addition, the size of the cell patches can be varied if needed.
As advantage, different well known deep learning models can be used without
adjusting their parameters too much. The cropped candidates were forwarded
to two pathologists for revision. Exemplary results of this process can be seen
in Fig. 1.

3.2 Network

Using deep learning in this work was based on the feature extraction ability of
this method. Since works with good features for mitosis detection could not
be found, it was logical to pick a deep learning approach. The size of the cell
patches was 50 x 50. An example of different cell types is found in Fig. 2. To
classify the mitotic cells two other classes have been extracted namely tumor
cells and granulocytes. Besides mitotic cells, canine mast cell tumors largely
consist of those last-mentioned cell types. Moreover, the detection of other cells
is required for calculating mitotic index. This index was used in [2] to increase
the accordance between pathologists. The idea is to divide the mitotic cell count
by the number of other cells because it is assumed that mitotic cells in sparse
regions may have higher influence on the diagnosis than in studded regions. Our
work will show that it is sufficient to use a simple net in order to achieve good
results due to the amount of data. Therefore the LeNet architecture was chosen.
To evaluate parameters that may effect the performance of the network, the deep
learning pipeline is taken into account. First of all, the manipulation of the input
is investigated. Afterwards, the feature extraction ability of the network must
be evaluated. The standard CNN in this work consists of two 5 x 5 convolutional
layers followed by 2 x 2 max pooling layer, nesterov momentum of 0.9 and a step
size of 0.01 was applied. The fully connected layer consists of 256 nodes followed
by a softmax activation layer. For better generalization a dropout of 0.5 was
used.
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Table 1. In the first part of the table methods for input manipulations are tested. At
next different modifications of the CNN architecture are evaluated.

CNN Precision Recall F1 support
CNN-+RGB 0.91 0.91 0.91 9490
CNN+GRAY 0.92 0.92 0.92 9490
CNN+AUG 0.92 0.92 0.92 9490
CNN+RGB+AUG 0.93 0.92 0.93 9490
CNN-+Moment 0.92 0.92 0.92 9490
CNN-+AdaDelta 0.89 0.89 0.89 9490
CNN-+AdaGrad 0.91 0.91 0.91 9490
CNN+ExtraLayer 0.89 0.88 0.88 9490

4 Results

4.1 Manipulation of the input

The augmentation of data is routinely performed to create virtually new samples.
This is beneficial when the amount of data is not sufficient or the variance in

Fig. 1. Cell distribution within a partially segmented H&E slide (green: mitotic cells,
blue: granulocytes, yellow: tumor cells).
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Table 2. MITOS and our dataset for equal amount of mitotic and non mitotic cells.

CNN Precision Recall F1 support
MITOS2014 0.66 0.65 0.65 172
OURS 0.93 0.93 0.93 4429

the test data is smaller than in real applications. To generate more varying
samples, random operations like rotations, scaling, shift in colour channels or
noise can be applied to achieve more robust features. If some information or small
differences are missing or getting obliterated, this might also have a negative
effect. Furthermore, the usage of grey scale images in contrast to RGB images
is evaluated. Augmentation in combination with RGB images results in an
increased performence. It is likely that the information is increased due to the
usage of three channels. In addition, augmentation is used to increase the dataset
and capture more variances in the images. The full impact can be seen from the
first part in Table 1.

4.2 Parameters affecting the feature extraction

The feature extraction ability of a neural network is based on its adaptation of
the filters. To adapt these filters a global loss function is minimized by back-
propagating an error. This requires different gradient descent methods. The
methods are able to overshot a global minimum or getting stuck in a local min-
imum. The different methods yield differnces in F-scores between 0.88 and 0.92
due to that behaviour. In addition, the depth of the network is effecting the
amount and quality of the filters. If the depth is too large, the network may

Fig. 2. Different cells of interest (green: mitotic cells, blue: granulocytes, yellow:
tumor cells).
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run into overfitting the training data which happened in our case. All effects are
gathered in the second part in table 1.

4.3 Baseline comparison

As baseline the MITOS2014 dataset of the ICPR14 contest was used. Therefore,
our dataset was translated into a two class problem. The network was trained
on a 80 — 20 split. The results in table 2 show a clear improvement on detection
accuracies, as is likely induced by the increased dataset size.

5 Conclusion

Our work supports the idea that the key of boosting the classification perfor-
mance is the amount of input data. The different gradient descent methods
reveal their effects on the performance of network as expected. The increased
depth of the network has no positive effect on the scores. The limitations of
small datasets in the medical field were shown in table 2 and emphasise the need
for larger datasets for pattern recognition in the medical context.
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