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Left Ventricle Segmentation in LGE-MRI:
Filter Based vs. Learning Based
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Abstract—Ischaemic heart disease is the number one cause of
death world wide, which is in close relation with heart failure.
If patients suffer from drug-refractory heart failure with a
reduced ejection fraction, cardiac resynchronization therapy is
a treatment option. For planning the procedure, precise infor-
mation about the left ventricle’s anatomy and scar distribution
is required. The clinical gold standard to visualize scar is
late gadolinium enhanced magnetic resonance imaging (LGE-
MRI). The challenge arises in the myocardium segmentation of
these sequences which is a pre-requisite for an accurate scar
quantification. In this work, we compare a filter based approach
against a learning based approach for LGE-MRI segmentation.
For both approaches the segmentation workflow consists of four
major steps. First, the left ventricle is detected. Second, the blood
pool is estimated. Third, the endocardium is refined using scar
information. Fourth, the epicardium is extracted.

The proposed methods were evaluated on 100 clinical LGE-
MRI data sets. For the learning based approach a 5-fold nested
cross-validation is applied to evaluate the hyper-parameters. The
learning based segmentation achieves slightly better results, with
a Dice score of 0.82 ± 0.09 for the endocard and 0.81 ± 0.08 for
the epicard.

I. INTRODUCTION

Cardiac disease is the major cause of death world wide [1].
In more detail, ischaemic heart disease is the number one
cause of death. Ischaemic heart disease is in close correlation
with heart failure (HF). According to Dickstein et al. [2] at
least 51 % of patients that suffer from HF have an ischaemic
history. For diagnosis in clinical routine, cardiac magnetic
resonance imaging (MRI) is performed. If patients suffer from
a drug-refractory HF, with a reduced left ventricular ejection
fraction caused by an asynchronous contraction pattern of the
heart, cardiac resynchronization therapy (CRT) is an important
treatment option. However, 30 % to 40 % of the patients do not
benefit from this therapy [3]. One reason is the suboptimal
placement of the left ventricular lead. If the lead is placed on
scar tissue, there may be no response. Therefore, knowledge
about the left ventricle’s anatomy and scar tissue distribution
is very important for procedure planning and guidance.

The clinical gold standard for tissue characterization is late
gadolinium enhanced (LGE) MRI [4]. For this sequence, a
gadolinium based contrast agent is injected intravenously. The
images are acquired 10 min to 20 min after the contrast injec-
tion. The contrast agent accumulates in the damaged tissue,
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Fig. 1: Overview of the LV segmentation workflow. First, the
LV is detected. Second, the blood pool is segmented by apply-
ing a morphological active contours approach without edges.
Third, the endocardial border is refined using a filter based
or learning based approach. Fourth, the epicardial contour is
extracted.

because of a larger extra-vascular, extra-cellular volume, and
a slower washout [5].

The challenge arises in the segmentation of these sequences
because of inhomogeneous contrast distribution within the my-
ocardium. Most work in literature use cine MRI images for the
segmentation and then propagate the contours to the LGE-MRI
images [6], [7], [8]. However, the direct segmentation of the
LGE-MRI is desired to achieve an accurate scar quantification.

In this work, we compare a filter based (FB) [9] vs. a
learning based (LB) [10] algorithm for the segmentation of
the left ventricle (LV) in LGE-MRI.

II. METHODS

The LV segmentation pipeline considered in this manuscript
consists of four steps [9], [10]. First, the LV is detected in the
short axis (SA) stack. Second, the result is used to initialize
a morphological active contours without edges (MACWE)
approach for initialization of the blood pool [11]. Third, the
endocardial contour is refined using either a FB or a LB
approach in combination with a minimal cost path (MCP)
search in polar space. Fourth, the epicardial boundary is
extracted using also either the FB or the LB approach. An
overview of the segmentation work flow is given in Figure 1.

1) Left Ventricle Detection: The LV is detected in the mid-
slice of the LGE-MRI SA stack, because in this slice the
LV has the most circular shape. For the detection, circular
Hough transforms are applied in combination with a roundness
measure. If the center from the circular Hough transform and
the center from the roundness measure are within a certain
range, the LV is detected successfully [10].

2) Blood Pool Segmentation: Next, a MACWE approach
is applied for blood pool estimation [11]. This approach
uses morphological operations instead of partial differential
equations, as they are computational efficient and less sensitive
to the initialization. The contour evolution depends on the
intensity values inside and outside of the contour [9].
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3) Endocardial Refinement: After a rough outline of the
blood pool is obtained, the endocardial contour can be refined
either using a filter based approach [9] or a learning based
method [10]. For both segmentation approaches, a cost map
in polar space is derived, where a minimal cost path in polar
space is initialized. The cost path finds the distance weighted
shortest path from the left side of the images to the right side
of the image.

For the filter based approach, the cost array is based on an
edge image generated using the Canny edge filter.

For the learning based approach, a random forest classifier
trained on steerable features is used to obtain the boundary
probability for each potential candidate [10]. Steerable features
are low level features based on the local gradient and intensity.

In addition, for both approaches a scar threshold is es-
timated. Therefore, the mean intensity µ and the standard
deviation σ of the blood pool are estimated. The scar threshold
is defined as θ = µ+σ. All pixels, that are above this threshold
and outside of the blood pool are defined as potential scar
candidates.

The final cost array is derived from the cost array combined
with the scar map. The MCP finds the distance weighted
minimal path. Next, the result is transferred back to the
Cartesian coordinate system and the convex hull is taken to
exclude papillary muscles and to obtain a smooth looking
contour.

After the first contour is refined, the information about
the location of the left ventricle is propagated in the basal
and apical direction and used for initialization of MACWE
approach [11].

4) Epicardial Refinement: For the epicardial contour ex-
traction, the previously estimated endocardial contour is used
as an initialization. As for the endocardial refinement, either
a filter based approach [9] or a learning based method [10]
can be used for the epicardial boundary delineation. For both
approaches, the endocardial contour is enlarged by a certain
radius and the refinement is performed in polar space.

For the filter based segmentation, the previously calculated
edge image is used, and all edges within the enlarged endo-
cardial contour are deleted. Having the modified edge array,
the closest edge to the enlarged endocardial contour within a
certain margin is searched for.

For the learning based approach, potential boundary candi-
dates are extracted based on the enlarged endocardial contour.
For the boundary probability estimation also steerable features
are used. After the cost map is obtained, a MCP search is
initialized, as for the endocardial boundary estimation.

The final contour is transferred back to Cartesian coordi-
nates and the convex hull is estimated to obtain a smooth
contour. The refinement of the epicardial contour in the apical
and basal direction ends with the same slice as for the
endocardial contour refinement.

III. EVALUATION AND RESULTS

The automatic segmentation of the LV endocardium and
epicardium was evaluated on 100 clinical 2-D LGE-MRI
data sets from individual patients. The inversion recovery
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Fig. 2: Comparison of the DC between the FB and the LB
segmentation for the endocardium and the epicardium.

LGE-MRI sequences were acquired with a 1.5T clinical
scanner (MAGNETOM Aera, Siemens Healthcare, Erlangen,
Germany). The slice thickness was set to 8 mm, with a pixel
size of (1.59-2.08 × 1.59-2.08) mm2 and the spacing between
the slices was set to 10 mm. Each data set contained between
10 and 13 SA slices. Gold standard annotations of the LVs
endo- and epicardium were provided by two clinical experts.
The clinical experts were asked to outline the endocardial and
epicardial border separately. To evaluate the overlap between
the segmentation results and the gold standard annotations,
the Dice coefficient (DC) was used as a quantitative measure
of the segmentation accuracy. In addition, the average surface
distance (ASD) in mm was evaluated.

For the evaluation of the learning based segmentation, a 5-
fold nested cross-validation was performed. Hence, in each
fold 20 data sets were used for testing and the rest was used
for the training and validation of the classifier. A grid search
was applied to optimize the hyper-parameters such as number
of trees and the tree depth.

In Table I, the results of the two segmentation methods are
presented, using DC and ASD. In Figure 2, the DC of the FB
vs. the LB approach are compared, for the endocardium and
epicardium, respectively. The blue line represents the mean
Dice coefficient. It can be seen that the LB segmentation
slightly outperforms the FB segmentation and is more robust
against outliers, especially for the endocardium. However,
there is no big difference in the final result, as the convex
hull is applied for both methods. The qualitative results are
presented in Figure 3. The first row depicts the raw data
from apex to base. The second row shows the gold standard
annotation of the clinical expert, where the endocardial contour
is shown in orange and the epicardial contour in green. The
third row depicts the result of the filter based approach, where
the endocardium is red and the epicardium yellow. The last
row visualizes the results for the learning based method using
the same colors as for the filter based segmentation. The
biggest difference compared to the gold standard annotation
appear in the base and the apex, especially for the epicard.

The proposed approaches were implemented in Python and
required less than 10 seconds for the segmentation of one
sequence on a computer equipped with an Intel i7-4810MQ
with 2.8 GHz CPU and 16 GB of RAM.
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Dice ASD [mm]

Filter Learning Filter Learning

Endo 0.80 ± 0.11 0.82 ± 0.09 3.71 ± 2.57 3.73 ± 2.17

Epi 0.81 ± 0.09 0.81 ± 0.08 4.33 ± 2.65 4.39 ± 2.19

TABLE I: Segmentation results for the endocardium (Endo) and epicardium (Epi) evaluated using Dice coefficient and average
surface distance (ASD).

(a) Pseudo SA slices from apical to basal direction

(b) Gold standard annotation from the clinical expert

(c) Filter based segmentation result

(d) Learning based segmentation result

Fig. 3: Comparison of the segmentation result for the learning based and filter based method. The first row shows the pseudo
SA slices from apical to basal direction without any contours. The second row depicts the gold standard annotation from the
physician, where the endocardium is marked in orange and the epicardium in green. The third row visualizes the filter based
segmentation method where the endocardial contour is shown in red and the epicardial contour in yellow. The fourth row
delineates the learning based algorithm, with the same colors as for the filter based approach.

IV. DISCUSSION AND CONCLUSION

Both presented segmentation algorithms only use the LGE-
MRI data for the segmentation of the left ventricle. As
previously mentioned, most work in literature use cine MRI
images for the segmentation and then propagate the contours
to the LGE-MRI images [6], [7], [8]. Still, even though we
only use the LGE-MRI sequence, our presented results are
comparable to the results reported in literature.

The biggest errors occur in the apex and at the left ventricu-
lar outflow tract (LVOT). The delineation of the left ventricular
outflow tract is not always clear and also depends on the
initialization of the short axis scan. The poor performance of
ASD is mainly due to the large errors in the apex and at the
LVOT. However, the results in the mid-cavity look promising.

In the course of this work, two fully automatic approaches
for the left ventricle segmentation in LGE-MRI have been
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presented, that provide accurate and consistent results. A clear
benefit of the presented methods is the independence of the
cine MRI contour propagation. The proposed LB segmentation
achieves slightly better results when compared to the FB
method, especially in the mid-cavity and is more robust against
outliers. For future work, different post-processing methods
will be considered. Furthermore, a graph-cut based approach
can be applied to the learning based classification results.

DISCLAIMER

The methods and information presented in this paper are
based on research and are not commercially available.

REFERENCES

[1] Joep Perk et al., “European guidelines on cardiovascular disease
prevention in clinical practice (version 2012),” International journal
of behavioral medicine, vol. 19, no. 4, pp. 403–488, May 2012.

[2] Kenneth Dickstein et al., “ESC Guidelines for the diagnosis and
treatment of acute and chronic heart failure 2008,” European Journal
of Heart Failure, vol. 10, no. 10, pp. 933–989, 2008.

[3] Anoop Shetty et al., “A comparison of left ventricular endocardial,
multisite, and multipolar epicardial cardiac resynchronization: an acute
haemodynamic and electroanatomical study,” Europace, vol. 16, no. 6,
pp. 873–879, February 2014.

[4] Taehoon Shin et al., “Rapid single-breath-hold 3D late gadolinium en-
hancement cardiac MRI using a stack-of-spirals acquisition,” Journal of
Magnetic Resonance Imaging, vol. 40, no. 6, pp. 1496–1502, December
2014.

[5] Raymond J Kim et al., “The use of contrast-enhanced magnetic
resonance imaging to identify reversible myocardial dysfunction,” New
England Journal of Medicine, vol. 343, no. 20, pp. 1445–1453, Novem-
ber 2000.

[6] Engin Dikici et al., “Quantification of Delayed Enhancement MR
Images,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2004, pp. 250–257. Springer, September 2004.

[7] Dong Wei, Ying Sun, Ping Chai, Adrian Low, and Sim Heng Ong,
“Myocardial Segmentation of Late Gadolinium Enhanced MR Images
by Propagation of Contours from Cine MR Images,” in Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2011,
pp. 428–435. Springer, September 2011.

[8] Qian Tao et al., “Automated Left Ventricle Segmentation in Late
Gadolinium-Enhanced MRI for Objective Myocardial Scar Assessment,”
Journal of Magnetic Resonance Imaging, November 2014.

[9] Tanja Kurzendorfer et al., “Automated Left Ventricle Segmentation
in 2-D LGE-MRI,” in Proceedings of the 2017 IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, IEEE, Ed.,
April 2017, pp. 831–834.

[10] Tanja Kurzendorfer et al., “Random Forest Based Left Ventricle
Segmentation in LGE-MRI,” in International Conference on Functional
Imaging and Modeling of the Heart. Springer, June 2017, pp. 152–160.

[11] Pablo Marquez-Neila et al., “A morphological approach to curvature-
based evolution of curves and surfaces,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 1, pp. 2–17, January
2014.


