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ABSTRACT

Object: To develop and validate a 3-D Cartesian Look-Locker T1 mapping technique that achieves

high accuracy and whole-liver coverage within a single breath-hold.

Materials and Methods: The proposed method combines sparse Cartesian sampling based on a

novel spatio-temporally incoherent Poisson pattern and k-space segmentation, dedicated for high

temporal resolution imaging. This combination allows capturing tissue with short relaxation times

with volumetric coverage. A joint reconstruction of the 3-D+TI data via compressed sensing ex-

ploits the spatio-temporal sparsity and ensures consistent quality for the subsequent multi-step T1

mapping. Data from the NIST phantom and 11 volunteers along with reference 2-D Look-Locker

acquisitions are used for validation. 2-D and 3-D methods are compared based on T1 values in

different abdominal tissues for 1.5 and 3 T systems.

Results: T1 maps obtained from the proposed 3-D method compare favorably with those from the

2-D reference and additionally allow for reformatting or volumetric analysis. Excellent agreement is

shown in phantom (bias3T < 2%, bias1.5T < 5% for [120;2000] ms) and volunteer data (3-D and 2-D

deviation < 4% for liver, muscle and spleen) for clinically acceptable scan (20 s) and reconstruction

times (< 4 min).

Conclusion: Whole-liver T1 mapping with high accuracy and precision is feasible in one breath-

hold using spatio-temporally incoherent sparse 3-D Cartesian sampling.

Key words: T1 mapping, 3-D Look-Locker, Compressed sensing, Poisson sampling
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INTRODUCTION

Quantitative maps of the longitudinal relaxation (T1) can provide diagnostic information for a large

set of pathologies throughout the whole body. With respect to abdominal diseases, T1 mapping is

used for detecting chronic pancreatitis, assessing liver function as well as function of native and

transplanted kidneys [1–4]. Despite the fact that the T1 relaxation can serve as a quantitative bi-

omarker, its widespread use in clinical practice is hampered by particularly long acquisition times

that are required for accurate T1 quantification. For the prevailing gold standard method, inversion

recovery (IR), the relaxation curve is repeatedly sampled at a single time point after an inversion or

saturation pulse, followed by a waiting period for full relaxation. This time period can be tremendous

as it is determined by the tissue with the longest T1 (∼ 5T1). Considerably faster acquisitions are

possible with the method by Look and Locker (LL) [5], which samples the relaxation curve at multiple

time points after inversion and corrects for the effects of the continuous readout [6]. Alternatively, it

is common to quantify T1 by using variable flip angle (VFA) images in combination with an additio-

nal B1 correction scan [7]. While this approach makes volumetric mapping feasible even in single

breath-holds [3, 8], its accuracy degrades with higher field-strengths and higher T1 values [9].

In today’s clinical practice, abdominal T1 mapping is performed either for few slices without

volumetric coverage based on IR or LL [2, 4], or with volumetric coverage using the VFA method,

ideally within a single breath-hold [1, 3]. However, single or multiple 2-D measurements with partial

coverage are suboptimal for various reasons: First, smaller organs can easily be missed, particularly

in case of patient movement or obliquely extending organs. Second, the signal-to-noise ratio (SNR)

is inherently lower than in 3-D acquisitions, which affects the precision of T1 quantification, thereby

reducing its discriminating value as a biomarker. Third, T1 could be inhomogeneous throughout the

organ, which is known to occur in the liver [3]. Thus, volumetric T1 mapping based on an accurate

IR or LL method that can be performed in 20 s would be highly desirable.

Even though 3-D extensions of LL exist, they require acquisition times in the order of several

minutes due to segmented sampling with delays for undisturbed (partial) relaxation, limiting its ap-

plication to static imaging, e.g., of the head or knee [10, 11]. It is worth noting that although partial

relaxation increases the scan efficiency compared to full relaxation, it limits the dynamic range and

further increases the B1 sensitivity. Alternatively, multi-slice LL strategies can utilize the free relax-

ation delay in other slices to capture a series of 2-D measurements very efficiently [12, 13]. The

advent of compressed sensing opened up the possibility of shortening scan time beyond what was

possible with parallel imaging alone [14]. Initially largely applied to qualitative imaging, it was found

that even sparser sampling is possible when sparsity in other dimensions such as time or contrast

is additionally used [15, 16]. Here, the approach of Doneva et al. stands out as one of the first

dictionary-based reconstructions [17]. In theory, many of these approaches are technically related
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since they try to enforce certain constraints, e.g. differences along the parametric dimension, either

more (dictionary) or less (finite differences) explicitly. In the context of T1 mapping, sparse methods

were mainly employed to accelerate 3-D VFA mapping or only 2-D LL approaches [16–19]. Re-

cently, a non-Cartesian spiral acquisition with through-time GRAPPA by Chen et al. demonstrated

volumetric LL-based T1 mapping for the first time in a breath-hold [20].

In this work, we aim to achieve the volumetric coverage of VFA methods with the accuracy of

LL-based methods in order to perform breath-held volumetric T1 mapping. To this end, we combine

an accurate 3-D LL scheme based on k-space segmentation with sparse incoherent sampling in

space and time. A compressed sensing reconstruction with spatio-temporal wavelet regularization

that has been successfully employed for 3-D CINE imaging ensures sufficient quality for subsequent

T1 fitting despite high acceleration factors [21]. A main advantage of our method over recent work

is that a self-contained volumetric T1 mapping is feasible in a single breath-hold where no further

time-consuming calibration scan is required. Validation of the proposed method is demonstrated

based on 2-D reference data using both phantom and in-vivo experiments. A preliminary version of

this work has been presented previously [22].

MATERIALS AND METHODS

Our proposed acquisition follows a Look-Locker scheme, which samples the relaxation continu-

ously with low flip-angle (FA) pulses after increasing the dynamic range by an adiabatic inversion

pulse [6]. To sample a larger number of phase-encoding steps along a desired time interval of the

relaxation curve, k-space is divided into S segments. In turn, following the original model (details in

subsection Multi-step T1 mapping), this requires S − 1 time delays (TD) for full relaxation in order

to provide equal magnetization before each repeated inversion pulse [20]. Figure 1 outlines the

concept of this segmented acquisition.

Sparse Cartesian sampling with spatio-temporal incoherence

In order to achieve the temporal resolution to properly observe the relaxation curve even for tissues

with very fast relaxation, the images are sparsely sampled with spatio-temporal incoherence during

the inversion time (TI) interval. To this end, we extended a fast 2-D Poisson sampling [23] to feature

variable density (VD) as well as variable incoherence along a sequence of generated patterns.

Compared to VD Poisson sampling [24, 25], the main advantage of the joint computation of all

k-space sampling patterns at different TIs is a better coverage for the collapsed (accumulated) k-

space of the complete measurement and less overlap between consecutive TIs. For view sharing, a

technically related approach for a complementary Poisson sampling was recently proposed [25].

Generating a two-dimensional sampling pattern for the phase-encoding steps is based on [23]
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FIG. 1 The measurement of the relaxation is repeated by the number of segments that are used to

partition the k-space in order to accommodate a 3-D phase encoding with high temporal resolution.

Except for the last, each partial acquisition that drives magnetization into a steady state is followed

by a constant delay time (TD), in which the relaxation to the initial magnetization can occur. At the

end of the acquisition, calibration data for the coil sensitivity map of the SENSE reconstruction is

acquired

to greatly accelerate the sampling process. Our variable density pattern is incorporated by scaling

the radius r, which is associated with the centered position p = (py, pz) with py ∈ [−0.5Ny, 0.5Ny)

and pz ∈ [−0.5Nz, 0.5Nz) by the reciprocal of a density-like function,

ρ̂(p) =

1−

distance to center︷ ︸︸ ︷√
p2y + (pza)2

s
√
(0.5Ny)2 + (0.5Nza)2︸ ︷︷ ︸

normalization


ν

, (1)

using the distance to the k-space center on a grid with aspect ratio a = Ny/Nz. The scale factor

s ≥ 1 (fixed to s = 1.2) in front of the normalization factor is used to adjust for the zero drop-off

at corner regions. The degree of variable density is controlled by the exponent ν (typically ν = 2).

Thus, the density at the border compared to the center is

ρ̂|border
ρ̂|center

=

(
1−

√
(Ny − 1)2 + a2(Nz − 1)2

s
√
N2
y +N2

z a
2

)ν
. (2)

Finally, the density ρ̂ is scaled such that the accumulation of all values on the grid matches the

desired number of sampling points, i.e. Np = NyNz/AF for the specified acceleration factor (AF):

ρ(p) = ρ̂(p)
Np∑
q ρ̂(q)

. (3)

Elliptical or fully sampled masks can be induced by setting the density at the respective position

close to zero or one.

By keeping track of sampled positions for all N TI images in an accumulated mask M a ∈

NNy×Nz , initialized by zero, and by adhering to a further discard rule during disc generation, the
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number of duplicate positions can be minimized while still maintaining Poisson properties:

M a(p) ≤ ρ(p) · n︸ ︷︷ ︸
density constraint

+

relaxes constraint︷ ︸︸ ︷
(1− θ) + ε , (4)

where θ ∈ [0, 1] controls the degree of incoherence for the current image n ∈ [1, N ]. The den-

sity constraint ρ(p) · n denotes the targeted density when generating the n-th image. The rational

behind this rule is that when θ is close to 1, only points that would contribute to a currently unders-

ampled density w.r.t. the targeted density are accepted. For such high values, the addition of a

small ε ≈ 0.01 is useful to relax this constraint in order to avoid concentric clusters or gaps in the

pattern [25]. That means, for smaller θ the temporal incoherence gradually relaxes while spatial Pois-

son properties are maintained. The complete Poisson generator is summarized under Algorithm 1

in the Appendix and code is openly available online: https://github.com/sifeluga/PDvdi. Note

that the final number of points can slightly vary due to the randomized processes but a deterministic

number of samples is required to warrant a subsequent k-space segmentation. Viable options are to

correct the number of points afterwards or to scale ρ to produce slightly more samples but stop the

generation when the number of desired points is reached. The effect of the temporal incoherence is

shown in Figure 2 for generating a k-space sequence of 10 TIs with the accumulated mask on the

left and the distinct k-spaces for increasing TIs on the right. Using temporal incoherence (bottom),

the number of duplicates (red)—points sampled more than once—was reduced and the k-space

coverage (yellow)—points sampled once—was increased.

Segmentation and reordering

The segmentation and reordering strategy affects the image contrast in several ways. One possible

effect is that neighboring points in k-space can end up with very different effective sampling times

leading to artifacts in the final image [26]. Another source of error are large gradient amplitudes

induced by oscillating positions in the phase-encoding plane, which can be reduced by keeping

gradient moments between consecutively sampled points small [27]. Since a high dynamic range of

the observed relaxation can improve the fit accuracy, a contrast that is formed as early as possible

is particularly advantageous for short T1 values. Possible schemes of segmentation and reordering

are illustrated in Figure 3. While a "linear" encoding with a higher time to k-space center is more

sensitive to artifacts [27], other schemes such as an "onion"-like segmentation [26] can suffer from

greatly varying gradient amplitudes between segments.

We thus favor a strategy that achieves both distance minimization between subsequently sam-

pled points and consistent reordering with an early acquired k-space center [27]. This can be achie-

ved by a "wedge" segmentation, which has recently been used to optimize the scan efficiency for

MP-Rage imaging [28]. To this end, points in the phase-encoding plane are ordered by their angle
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FIG. 2 Generating a sequence of Poisson patterns independently can yield high correlations be-

tween patterns, resulting in a substantial amount of duplicates and at the same time leave many

positions uncovered over the course of contrasts (a). With the inclusion of an additional rule during

point generation, the temporal incoherence can variably (θ) be increased. For an exemplary setup

(Ny=110, Nz=50, N=10, AF=12, ν = 2) and θ = 0.75, the number of duplicates (red)—points

sampled more than once—reduced from 33% to 21% while the coverage (yellow)—points sampled

once—increased from 52% to 63% (b)

to the k-space center and partitioned into S equally numbered "wedges". The reordering of each

wedge starts at the center and extends outwards by traversing points alternatingly in between the

wedge’s angular bounds (see Figure 3 (c,f)). Compared to other schemes, the average distance

between sampled points is minimized. Since the TI time associated to a reordering is not strictly de-

fined, we determined the time to center for each sampling scheme experimentally through inspection

of relaxation curves with known T1 values.

Data reconstruction

The 3-D data of all TI images was reconstructed jointly in order to exploit the temporal similarity

between adjacent contrasts during a time-resolved (3-D+t) reconstruction [21]. A SENSE based non-

linear iterative reconstruction with spatio-temporal regularization via Haar wavelets was used [29].

For convenience, the four-dimensional data was decoupled along the fully sampled readout direction

and reconstructed as Nx vectors of 2-D+t concatenated TI images x i =
[
x (1)Ti , . . . ,x (N)Ti

]T ∈
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FIG. 3 Exemplary k-space segmentations along with possible reordering schemes for traversal: "li-

near" (a), "onion" (b) and "wedge" (c) segmentations with 3 and 4 segments. Each strategy is

accompanied by particular reordering strategies (d)-(f). The combination of both defines the actual

sampling order, which affects gradient magnitudes and image contrast. For a typical k-space with

4 segments and variable density (Ny = 110, Nz = 50, AF = 12, ν = 2), the average distance for

traversing all points is 11.6, 4.9 and 4.5 for the "linear", "onion" and "wedge" sampling scheme

CNyNz ·N , i ∈ [1, Nx] with the following cost function,

x i = argmin
x̂ i

N∑
n=1

C∑
c=1

1

2
‖U nFS cx̂ (n)i − y(n)c‖22 +

∥∥W (σ,τ)x̂ i
∥∥
1
, (5)

where S c denotes the coil sensitivity matrix, F the Fourier transform and U t the undersampling

matrix which are applied to current image estimate x̂ (n)i to calculate the difference to the mea-

sured data y(n)c for coil and time index c and n, respectively. W (σ,τ) denotes a single-level Haar

wavelet transformation in the phase- and time-encoding directions. A FISTA scheme was used to op-

timize the cost function [30, 31], which was implemented using proximal algorithms. Consequently,

the solution of the proximal operator for the wavelet regularization is a shrinkage of wavelet coeffi-

cients [32]. Similarly to level-dependent shrinkage, this offers the possibility of different thresholds,

λσ and λτ , for low- and high-frequency coefficients in the final, i.e. temporal, transform dimen-

sion [31]. In what follows, they are denoted spatial and temporal regularization weights.

Multi-step T1 mapping

Spoiled gradient echoes (GRE) are used to acquire readouts with low flip angles, i.e. FLASH ima-

ging, and, thus, the signal model for 2-D LL by Deichmann et al. is applicable [6]. This holds only if

sufficient delay for full relaxation is scheduled in between segments [20]. Effects of insufficient delay

are discussed below.
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A short revisit of [6] helps to appreciate that despite a high flip angle dependence, knowledge

of the actual excitation can be circumvented. The signal at time TI after a (perfect) 180° inversion

pulse is dependent on the initial and steady-state magnetizationM0 andMSS as well as the effective

relaxation T1∗:

M(TI ) =MSS − (M0 +MSS)e
−TI/T ∗

1 . (6)

The relation between effective and true relaxation is a function of TR and flip angle (FA) α,

1

T ∗1
=

1

T1
− 1

TR · log(cosα)
. (7)

For calculating T1 using the above equation, knowledge of the actual FA is required, which can

largely deviate from the nominal value, e.g., due to B1 field inhomogeneities. However, observing

the relaxation at sufficient time points N and using the model reformulation M(TI ) = a− be−TI/T ∗
1

can yield T1 without knowledge of the actual FA by

T1 = T ∗1 (b/a− 1) , (8)

after a voxel-wise non-linear least squares fit for a, b ∈ C and T ∗1 ∈ R:

min
a,b,T ∗

1

N∑
n=1

(
x (n)−

∣∣∣a− be−TIn/T ∗
1

∣∣∣)2

. (9)

Naturally, this requires that a point in time TI n is associated to every image x (n), i.e. when the

image contrast is formed. Yet, the formation of contrast is dependent on the actual segmentation

and reordering strategy, which then also influences the T1 value. Thus, a consistent way of selecting

TI is required. We opted to calibrate the initial TI (latter ones depend on TI 1 and TR) based on

actual measurements of the T1 phantom: TI 1 was chosen to minimize the overall error to known T1

values in the range of 120 to 2000 ms (cf. Sec. Experiments).

It is important to note that in case of a segmented acquisition, T1 can only accurately be deter-

mined when the wait time (TD) is long enough for full relaxation before acquiring the next segment.

While this does not affect the exponential parameter T ∗1 , a reduced starting magnetization M0 chan-

ges the correction term b/a such that the induced T1 error is directly proportional to the percentual

relaxation. This can be simulated for various T1 from Eqs. (6) and (7) dependent on TR, α, the

acquisition window and TD [20].

As later described by Deichmann [33], the actual FA can be extracted from Eq. (7), which can

be used to fit the data more robustly to a model with only two parameters T∗1 and M0,

M(TI ) =M0

(
1 +

T ∗1
TR

log(cosα)−
(
2 +

T ∗1
TR

log(cosα)
)
e−TI/T ∗

1

)
. (10)

This lends itself to a multi-step algorithm, where the common assumption of a smoothly varying

B1 field can be imposed on the flip angle distribution [26]. After the initial three-parameter fit, the
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Protocol 2-D 3-D 1.5 T 3-D 3 T 3-D 1.5 T (high-res)

Figure # 5 5 to 9 4, 5, 8 and 9 8

TE/TR [ms] 1.3/2.9 0.7/1.9 0.8/2.0 0.9/2.1

Flip angle [°] 8 3 2.5 3

Bandwidth [Hz] 1530 1490 1530 1490

FOV [cm] 37× 27 37±1× 27±3× 18 37±3× 27±3× 18 35× 26× 16

Resolution [mm] 1.9× 2.3∗ 2.2× 2.2 2.3× 2.3 1.8× 2.0

Thickness [mm] 8 6 6 5

Sampling [%] 100 100/97 89/93 100/90

N/S 16/- 12/4 12/3 12/4

TA/TD [s] 3.2/- 20.0/3.5(3.1)† 19.5/4.5 20.0/3

AF 2 12 11 16

Table 1. Acquisition parameters for different protocols. Their usage can be identified via the figure

numbers. Sampling denotes the sampling percentage of the phase/slice encoding. Acquisition time

(TA). ∗ interpolated to 1.0 mm2. † was used only once for phantom data in Figure 5

extracted flip angle map is spatially smoothed. We chose a signal-weighted linear filter of length

6, whose weights are determined by the average magnitude signal of the TI series. Subsequently,

a two-parameter fit is performed with the FA map as prior information. Similarly to [34], fitting was

implemented as a variable projection algorithm which reduces the non-linear least squares problem

to a one-dimensional line search.

Data and acquisition setup

The proposed 3-D and reference 2-D LL imaging was performed in 11 healthy volunteers (5 female

and 6 male, age 53±21 years) and in the ISMRM/NIST phantom [35]. The datasets were acquired

on 1.5 T (n=5) and 3 T (n=6) clinical MR scanners (MAGNETOM Aera/Skyra, Siemens Healthcare,

Erlangen, Germany) using prototypical Look-Locker sequences for the reference 2-D and the pro-

posed 3-D acquisition. All protocol parameters are listed in Table 1 along with their figure location.

Further, parallel imaging with acceleration factor (AF) of 2 was used for 2-D LL. The Poisson sam-

pling parameters were ν = 2, R = 47 and θ = 0.75. For the non-selective inversion, an adiabatic

tan/tanh pulse with 10 ms duration was utilized [36]. A fully sampled central k-space area of size

24× 24 for sensitivity calibration is included in the scan time. Signal reception was performed with

the table-mounted coil array and a flexible body coil array using a subset of 26-30 channels, depen-

ding on the field of view (FOV).

All reconstructions were performed using a prototype software on a clinical scanner hardware

system (Octa-core, 2.1 GHz Intel Xeon processor). If not stated otherwise, 35 FISTA iterations with
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regularization weights λσ = 0.0006 and λτ = 15λσ were used for 1.5 T and λσ = 0.0003 and

λτ = 8λσ for 3 T.

Experiments and quality assessment

We performed a variety of experiments to evaluate the proposed 3-D LL method including its ro-

bustness on both phantom and volunteer data as well as the effect of regularization and sampling

strategies. To test the accuracy and precision, the T1 array of the ISMRM/NIST phantom was utili-

zed. Nine spheres, which were filled with different concentrations of NiCl2 to yield T1 values in the

range of 120 to 2000 ms were sampled. Ground-truth T1 values for comparison were taken from IR

measurements by Keenan et al. [35].

Initially, the impact of different reordering and segmentation schemes on the dynamic range

of the relaxation as well as on T1 accuracy was evaluated. To this end, the NIST phantom was

acquired at 3 T using the same sampling pattern for each of the described segmentation/reordering

schemes and reconstructed with identical parameters. Reference values of the phantom’s T1 array

were used to calibrate the initial TI times for the three sampling schemes. Tube number six of the

phantom with a T1 at the lower end (350 ms) of the hepatic range was then selected for evaluating

the signal relaxation curves. For all 9 spheres, the relative accuracy and precision was determined

after calibrating the initial TI times for each sampling scheme to yield a high overall accuracy. Based

on this criterion, one scheme was selected for all further experiments.

Before assessing the actual accuracy on phantom data, theoretically obtainable relaxation reco-

very and T1 error rates (following the first inversion and delay time) for the protocols of this and a

related study [20] were simulated as a function of T1. Being the main focus, the range of abdominal

T1 values (300–1300 ms) was highlighted [2, 20]. Next, T1 maps of the phantom were acquired and

compared for a reference 2-D LL implementation and the proposed 3-D method (wedge sampling

scheme) based on linear regression with known reference values. The mean absolute percentage

error (MAPE) and the average ROI standard deviation (SD) were calculated. With the 3-D method,

data was acquired at both 1.5 and 3 T.

Appropriate regularization weights are crucial for in-vivo imaging in the context of iterative recon-

struction techniques. Their choice was based on qualitative and quantitative experiments for spatial

and temporal regularization, respectively. An expert regularization was considered particurarly help-

ful for selecting spatial weights because they can have drastic impact on image impression while

less affecting T1. In order to find the option with the highest image quality w.r.t. both T1 map and

TI images, reconstructions from two exemplary datasets, one for each field strength with varying

spatial (λσ = 0.005/2i, i ∈ [0; 7]) and temporal regularization (λτ = 64λσ/2
j , j ∈ [0; 7]) were shown

to five oncology MRI experts with in average 16±11 years of experience. Their preferences were
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consolidated by selecting the median vote for the decision of the spatial regularization parameter.

The temporal regularization was selected according to an analysis of the relaxation curve and T1 ro-

bustness for increasing temporal regularization using representative ROIs of liver and muscle tissue.

The final selection criterion was the factor resulting in the minimum SD of the hepatic tissue.

Additionally to a qualitative comparison of representative T1 maps as obtained with the 3-D and

the 2-D method, the volunteer study included a T1 evaluation of different abdominal tissue types

in 11 volunteers grouped by acquisition method and field strength. To this end, several ROIs were

drawn in slices from the 2-D reference acquisitions and matched with those in 3-D. Vessel structures

in the liver were carefully spared. With a particular focus on the hepatic T1, a further analysis of

accuracy, variability and agreement between the proposed and the reference method was carried

out.

RESULTS

Sampling strategy

The ability of different sampling strategies to capture the dynamics of the relaxation and to map T1

values with a certain accuracy and precision is summarized in Figure 4. Aligning the sampled data

points of the linear, the onion and the wedge scheme, it is possible to compare their dynamic ranges.

Despite having yield very similar T1 values (353-356 ms), the linear and the onion sampling captured

only 44 % and 70 % of the initial dynamic as compared to the proposed wedge scheme. Evaluating

T1 accuracy on a larger range, the relative accuracy and precision as a function of T1 varied broadly

for the linear and the onion scheme, exceeding 10 % for low T1 values. In average, the MAPE of

the linear, onion and wedge scheme were 5.7 %, −5.1 % and 2.3 % with average SDs of 11.7 ms,

15.9 ms and 12.1 ms. Figure 4 also shows qualitative examples of a phantom acquisition using said

sampling schemes.

Phantom study

Figure 5(a) shows signal recovery and T1 error rates for various protocols. Our 3 T protocol attains

above 95 % recovery until above 1900 ms while the ones for 1.5 T receive as much recovery until T1

values of about 1320 ms and 1460 ms for a TD of 3.1 s and 3.5 s. With that, all protocols are below

5 % T1 error for abdominal tissue. Dashed lines denote corresponding protocols of a related study

for comparison. Figure 5(b-d) summarize the results of the linear regression and variability analysis

between T1 values obtained by phantom acquisitions and known ground-truth values. With a MAPE

of 1.6 %, slope and bias of 1.0 and −5.8 ms, the proposed 3-D method achieved a slightly higher

accuracy than the 2-D reference with 3.5 % MAPE and slope and bias of 1.1 and −16.7 ms at 3 T.

At 1.5 T, results for the modified protocol with a shorter TD of 3.1 s were a slope and bias of 0.9
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FIG. 4 Signal evolution of the 350 ms sample (green arrow) of the NIST phantom is shown for

different segmentation and reordering schemes (a). Using appropriate initial TI values, the relaxation

curves can be aligned, showing the differences in the captured dynamic range. Relative T1 errors

and SDs of the different sampling schemes are plotted as a function of T1 (b). The average error

and SD are reported too. A qualitative comparison of the approaches is shown for the first TI along

with an SNR evaluation (yellow boxes) (c). Orange arrows indicate intensity artifacts
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FIG. 5 Simulated relaxation recovery and T1 error rates for various protocols (a). Comparison of

T1 accuracy and precision in the range of 0.1 to 2.0 s for acquisitions of the NIST phantom using a

reference 2-D LL (only at 3 T) and the proposed 3-D sequence (c,d). Reference values are plotted

against the measured ones along with their standard deviation (red). Identity is indicated by the

dashed line whereas the blue line is the result of linear regression whose parameters are listed

below along with the MAPE and the mean SD

and 12.7 ms and a MAPE of 4.5 %. The standard deviation (SD) increased for tubes with higher T1

values and was in average 24.4 ms and 8.8 ms for 3-D and 2-D at 3 T, and 32.9 ms for 3-D at 1.5 T.

Evaluation of iterative reconstruction parameters

Figure 6 illustrates the qualitative evaluation of TI images and T1 maps for one exemplary volunteer

at 1.5 T by showing a subset of the options for spatio-temporal regularization that MR experts had to

choose from. Preferred options are highlighted. As provided in Table 2, the preferences range more

widely for the spatial weight at 1.5 T but yield higher consensus for the temporal regularization and

at 3 T in general. The impact of varying regularization factors on the robustness of the relaxation

curve and T1 values in liver and muscle tissue is demonstrated in Figure 7. For increasing spatial

regularization, the T1 SD decreases while the T1 itself tends to increase. The range of variation and

the SD are larger for liver tissue likely due to its lower SNR. Temporal regularization with very high

factors caused a signal underestimation of the initial relaxation whereas very low factors lead to high

14



Category Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Median

1.5 T spatial (i) 3 4 2 5 1 3
1.5 T temporal (j) 1 1 3 1 1 1
3 T Spatial (i) 4 4 5 5 4 4
3 T Temporal (j) 3 2 3 4 2 3

Table 2. Image preferences of five MR experts for spatial and temporal regularization factors using

volunteer datasets at both field-strengths. The median vote marks the final choice. The selection

options from 0 to 7 correspond to the regularization weights as described on page 11

variability in between TIs towards the steady-state. For the large range of temporal regularization

weights, T1 varies within a range of 5 % and 2 % for liver and muscle tissue. This difference seems to

be in accordance with their SNR values of about 17 and 28. Finally, the SD as a function of temporal

regularization forms a minimum at about the same range of weights for both tissue types.

In-vivo study

Qualitative results of three exemplary volunteers are presented for comparison in Figure 8 for the

proposed 3-D and reference 2-D method. In addition to the axial views, coronal or sagittal reformat-

ting was possible for the 3-D data. For some volunteers, 3-D scans with a higher resolution, being

closer to that of the reference, were additionally acquired in about the same time by using higher

undersampling and shorter delays (cf. Table 1). The overall reconstruction time of the 3-D TI data

with the above protocol parameters was less than 3 min and about 30 s for T1 mapping.

Average T1 values along with their ROI SD and inter-subject variability (variation of mean T1

values among subjects) as obtained from 11 volunteers by the proposed and the reference method

can be found in Table 3. While the T1 SD is similar at the higher field strength, it is 40 %, 45 %

and 28 % lower in liver, spleen and muscle tissue for 3-D at 1.5 T. Focusing on liver tissue in more

detail, the agreement between T1 values obtained by the two methods as well as its precision is

summarized in the scatter and Bland-Altman plots of Figure 9. The average differences between the

methods were -10 and 1 ms for 1.5 and 3 T but the confidence interval for the lower field-strength

was half as wide compared to 3 T.

DISCUSSION

We developed a 3-D Cartesian Look-Locker technique that is able to perform whole liver T1 mapping

within a single breath-hold using sparse sampling and spatio-temporally constrained reconstruction.

An essential feature is the k-space segmentation as it allows for a 3- to 4-fold increase in temporal
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FIG. 6 An exemplary volunteer dataset was reconstructed with varying spatial and temporal regu-

larization weights to find the optimal reconstruction parameters by visual inspection. Two contrast

images (after zero crossing and towards steady state) and the corresponding T1 map at 1.5 and 3 T

were rated by five MR experts. A subset of the images for 1.5 T is shown, where the effects of incre-

asing spatial (temporal) regularization weights for a fixed temporal (spatial) factor are observable.

Preferred choices are outlined in green (cf. Table 2)

resolution, which is required to robustly determine T1 in the case of rapid relaxation. In this context,

we showed that the actual segmentation and reordering scheme vastly impacts the ability to capture

the full dynamics of the relaxation and thereby T1 accuracy. The reduced signal amplitude using a

linear or onion scheme, up to 44 % compared to the wedge scheme, caused considerable inaccura-

cies for T1 values below 300 ms. Further, we observed different degrees of blur or intensity artifacts

on phantom (cf. Figure 4) and in-vivo data depending on the actual segmentation and reordering.

Other studies reported similar findings, particularly for the linear case [26]. These effects could be

due to variation among the density within segments affecting the effective time at which k-space

center points are sampled, which depends on asymmetry from variable density and non-quadratic

FOVs too.

A validation of the proposed method based on the NIST phantom revealed excellent agreement

with known reference values. At 3 T, very high accuracy was achieved in the whole T1 range while

the 2-D reference tended to overestimate higher values (Figure 5). For 1.5 T, excellent accuracy was

achieved from 120 to 1000 ms. Declining accuracy towards very high T1 values, above 1500 ms, can

be attributed to a shortened TD of 3.1 s as compared to 3.5 s used in-vivo and 4.5 s as used for 3 T.
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1.5 T 3 T

Tissue 3-D 2-D 3-D 2-D

Liver 554± 37 (33) 544± 52 (25) 767± 44 (111) 768± 44 (117)

Spleen∗ 1064± 69 (47) 1106± 100 (43) 1381± 64 (80) 1403± 75 (64)

Muscle∗ 892± 36 (17) 876± 46 (16) 1206± 54 (68) 1173± 52 (45)

Table 3. Average T1 values [ms] along with their ROI standard deviation and inter-subject variability

(bracketed) for the evaluated tissues in 11 volunteers. ∗Total number of cases reduced to 8 since

the organ was not acquired in 2-D

This is supported by the simulations on signal recovery and T1 error rates, which show the trends

between the setups clearly. But focusing on abdominal T1 only, all protocols yield theoretical T1

errors below 5 %. The measured T1 variability in the phantom was more than twice as high for 3-D

compared to 2-D at 3 T and further increased at the lower field-strength. As this relation was not

seen in-vivo, it can likely be attributed to the small sample size of the phantom spheres comprising

only about 10 pixels for the 3-D protocol but 8-fold as many for 2-D. These differences can be seen

in similar studies involving 3-D/2-D phantom/in-vivo data too, e.g. [11].

The choice of regularization parameters for the iterative reconstruction is crucial as it controls

the balance between a potential loss of features through over-regularization and aliased images with

grainy noise in the case of under-regularization. Although quantitative techniques exist to determine

the optimal choice for specific criteria such as the L-curve [37], it remains a topic of ongoing rese-

arch in general. However, we addressed this issue by considering both visual ratings from five MR

experts and technical criteria related to T1 variability. The T1 SD as a function of temporal weight

suggested a range with lowest SD quite clearly (see Figure 7). The rationale behind this region with

minimal SD is that a too low regularization weight preserves most variations such as noise and ar-

tifacts in the temporal domain, while very high factors tend to shortcut the relaxation, thereby again

increasing the differences between neighboring contrasts. Using this criterion, the final choice was

more conservative than the experts’ consensus, which rated for a slightly higher temporal regulari-

zation. The T1 values themselves seemed to be quite robust against increasing regularization: even

for rather extreme regularization weights, the variation did not exceed a range of 5 % and 2 % for

liver and muscle tissue, which is less than their SD. The higher variation for liver tissue is what we

attribute to its lower SNR since the evaluated muscle tissue (back) is closer to the receiving coil

elements. A similar effect was observed when considering effects of spatial regularization. Howe-

ver, here the SD consistently decreased with stronger regularization whereas the T1 itself tended
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to increase. This is explicable by considering that too strong regularization thresholds actual signal

instead of noise, which largely affects small intensities causing steeper relaxing curves. Considering

that for varying spatial regularization, small changes in T1 can translate to considerable changes in

image appearance (cf. Figure 6), we favored the experts’ decision over quantitative measures.

The comparison of T1 values in 11 volunteers showed very high agreement between the pro-

posed and the reference method at both field-strengths. Also, the confidence intervals of the dif-

ferences between hepatic T1 values are as low or lower than the measured tissue variability (see

Table 3 and Figure 9). In striking contrast to the findings from phantom data, the T1 variability in 3-D

and 2-D data is similar for the higher field but up to 45 % lower for 3-D at 1.5 T. A hepatic T1 SD

of 6.7 % and 5.7 % of its mean for 1.5 and 3 T compares favorably with current work, particularly in

view of the high undersampling factor [20]. A low apparent signal-to-noise ratio (SNR) in the FOV

center is symptomatic for high resolution abdominal 2-D imaging, and the observation that the SNR

differences vanish at 3 T suggests that the SNR gain at 1.5 T can be attributed to the acquisition in

3-D (despite a low flip angle setup) and the intrinsic spatio-temporal denoising during the iterative

reconstruction.

The qualitative comparison in three volunteers shows T1 maps with a well comparable impres-

sion between 3-D and 2-D acquisitions (see Figure 8). The axial views in 2-D are of higher resolution,

offering a little more detail on vessels and sharp edges, albeit with considerable fine grained noise

particularly for the lower field strength. The presented 3-D scan with a similarly high spatial resolu-

tion achieved a comparable image impression and noise characteristic. In general, a major benefit

of the 3-D acquisition is the volumetric coverage that offers among other benefits coronal or sagittal

views as well as volumetric organ analysis.

Another key feature of the proposed approach is the variable density sampling with high sparsity

and additional temporal incoherence. Our novel extension for spatio-temporally incoherent Pois-

son sampling was developed for multi-contrast or dynamic imaging to provide improved k-space

coverage and incoherence over conventional Poisson disc sampling (see Figure 2). Above that, with

0.3 s for generating and segmenting patterns of a typical protocol, the sampling can be implemented

fast enough to be used online.

Generally, one major drawback of segmentation with a signal model that requires full relaxation

is the poor scan efficiency. In fact, our protocols use only about half of the breath-hold time for

signal reception. With higher fields and increasing T1 values, the time for full relaxation increases

as well. Yet, at the same time it is sufficient to use a lower temporal resolution and with that either

less segmentation or acceleration. With the above protocol, we can accurately determine T1 values

down to 120 ms for which there is currently no clinical application with the exception of, e.g., cardiac

function analysis [38]. Consequently, a shorter scan time, higher resolution imaging or sharper
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images due to less sparse sampling are readily available by reducing the number of segments,

i.e. the temporal resolution. We chose wait times consistent with or more conservatively than in

previous studies [20], because we too observed how residual magnetization differences between k-

space segments can degrade image quality [26]. But even with the same delay times, our protocols

can attain more recovery compared to [20], primarily due to utilizing smaller FAs (cf. Figure 5).

Notice that a zero wait time sacrifices B1 robustness, which is crucial for abdominal imaging and

enables the Look-Locker technique to be superior to VFA methods. Alternatively following [12, 39],

one could introduce an initial magnetization preparation to cut wait times down to the order of T1

values for the cost of a reduced dynamic range, i.e. fit precision.

A further remark, the inversion quality was not modeled or corrected as this seemed a negligible

source of error given the utilized adiabatic inversion. However, by switching from a longer bell-

shaped hyperbolic secant to a shorter square tan/tanh pulse, we noticed a slight improvement in the

dynamic range as well as in the SD [36].

Although reconstruction times of less than four minutes are generally competitive, they may not

be tolerable in every clinical setting. Hence, an approximately 5-fold further reduction in proces-

sing time without yet considering coil compression can be gained from a (multi-)GPU implementa-

tion [21]. Finally, a comparison to previous compressed sensing methods is difficult since they are

mostly based on either VFA methods with retrospective undersampling [16, 18], or based on 2-D LL

techniques using radial readouts [19] or retrospective experiments [17]. Commonly, 3-D VFA has

been compared using the ratio of number of measurements/acceleration factor. These works, which

were validated using retrospective undersampling only, achieve a ratio of 1.6 as compared to 1.0

of our proposed method. At the same time, the reported reconstruction times can lie in order of

hours [18]. In future work, we plan to validate the feasibility of the proposed method in patients too.

CONCLUSION

We developed a 3-D Cartesian Look-Locker technique that is able to map T1 in the whole liver

within a single breath-hold. Through the combination of a segmentation strategy that is dedicated

to the LL scheme and a novel spatio-temporally incoherence for Poisson sampling, the accuracy

of conventional 2-D LL can be achieved, but with the large volumetric coverage that is usually only

feasible with VFA methods. A thorough validation on phantom as well as volunteer data showed

excellent agreement with known values and the reference method. Typical challenges in a clinical

setting such as sampling bias, multiple scans to include large or missed organs could be tackled via

such a fast and accurate volumetric T1 mapping technique.
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(c) (d)

[553;585] = 32 ms (5%) 

[878;895] = 17 ms (2%)

(a) (b)

FIG. 7 The effect of varying regularization factors for an exemplary liver and muscle ROI at 1.5 T:

T1 mean and SD for different spatial regularization options (a). For better visibility, a linear range of

regularization options was used (i.e. decreasing regularization strength from left to right), including

a small offset to distinguish liver and muscle tissue. Effect of temporal regularization on the hepatic

relaxation curve (b): for small regularization factors, there is a high variability between TIs towards

the steady state, while very high factors tend to underestimate the high dynamics at the beginning

relaxation. T1 mean (c) and SD (d) for increasing temporal regularization. The range of T1 variation

is 5 % and 2 % for liver and muscle. The SDs of both tissue types show minimal values at about the

same regularization factor
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FIG. 8 Qualitative comparison of T1 maps as obtained by 3-D and reference 2-D LL for three exem-

plary datasets. T1 maps of the reference were restricted to few axial views (interpolated 1 mm2 with

8 mm slice thickness) per breath-hold while the 3-D acquisition with 30 slices enabled the usage of

reformatted views. For some volunteers (here, #3) higher resolution protocols were acquired as well

(cf. Table 1). The intensity scale applies for both 2-D and 3-D

(a) (b)

FIG. 9 Quantitative comparison of the average hepatic T1 as obtained by the proposed 3-D and

reference 2-D method in 11 volunteers: a scatter plot shows the agreement between T1 values along

with its SD (a). The average differences between the methods are indicated by a blue and red line

for 1.5 and 3 T (-10 and 1 ms), along with its confidence intervals (dotted lines) in the Bland-Altman

plot (b)
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Algorithm 1: 2-D+t Poisson sampling with variable density and incoherence
Input: Ny, Nz, R, n, θ,ma, rmin ← 0.634, ρ←(Eqs. (1) and (3))

Output: Mask M of size Ny ×Nz

seed(n) // Deterministic but different masks for each n

lactive ← ()

p ← (Ny/2, Nz/2) // Start at the center or add a jitter

lactive ← (lactive,p) // Add to the list of active points

M (p)← 1, M a(p)←M a(p) + 1 // Set and accumulate masks

while lactive 6= () do

pc ← pop(lactive) // Take out first or any existing point

ρc ← ρ(pc)

// Generate up to R points from current position and density

for i← 1 to R do

// Random uniform numbers in the range [a,b)

rc ← randu(rmin/ρc, 2rmin/ρc), αc ← randu(0, 2π)

p ← pc + (dcos(αc)rce, dsin(αc)rce)

if p 6= pc and insideBounds(p, Ny, Nz) then

// Sampled too often according to Eq. (4)

if lacksIncoherence(p,M a, t, θ) then continue

// Distance to nearby existing points smaller rmin/ρ(p))

if anyPointWithinRadius(p,M , rmin/ρ(p)) then continue

lactive ← (lactive,p)

M (p)← 1, M a(p)←M a(p) + 1
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