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Synopsis
Quantitative sodium MRI could be a sensitive tool for therapy monitoring in muscular diseases. However, sodium MRI suffers a low signal-to-
noise ratio (SNR). 3D dictionary-learning compressed-sensing (3D-DLCS) enables SNR improvement and acceleration of sodium MRI, but it is
dependent on parameterization. In this work a simulation based optimization method for 3D-DLCS is presented, which finds the most suitable
parameters for 3D-DLCS in the context of sodium quantification. The method is applied in an in vivo study to quantify sodium in the skeletal
muscle. The optimized 3D-DLCS yields a lower quantification error than the reference reconstruction method (Nonuniform FFT).

Introduction
Tissue sodium concentration (TSC) is potentially a useful measure for muscle tissue constitution and could be an impactful tool for therapy monitoring in
muscular diseases . Sodium MRI ( Na-MRI) is a non-invasive method to quantify TSC . However, Na-MRI suffers from low signal-to-noise ratio (SNR)
due to the low gyromagnetic ratio, low in vivo concentration and fast relaxation times of sodium. Compressed sensing  (CS) based approaches  have
been shown to be very effective to improve SNR for Na-MRI. Although these iterative methods are dependent on parameterization. In particular sparsity
weighting is still a frequently discussed topic and there is no gold standard for assessment. In this work, a simulation based assessment method of CS
reconstructions for the application of TSC quantification is proposed. The method is applied in an to vivo study to optimize parameters for reconstruction
with 3D dictionary-learning compressed-sensing  (3D-DLCS). Quantitative in vivo TSC maps are reconstructed, which are undersampled to decrease
measurement time and facilitate clinical applicability.

Methods
The assessment approach is based on simulation of an analytical phantom of the human calf (see Fig. 1). Different tissue types are simulated with
assigned concentrations and T2* relaxation times corresponding to literature  (fat tissue: 10 mMol/L, blood vessels: 80 mMol/L, muscle tissue: 12-25
mMol/L, see Figure 1). Four reference tubes (10, 20, 30, 40 mMol/L) are simulated for normalization and complex white Gaussian noise is added to match
the SNR of the in vivo measurements. The assessment method refers to the phantom as ground truth (GT) and uses a region-of-interest (ROI) based
determination of the TSC. The normalized maximum ( ) and mean error ( ) w.r.t. the GT and the normalized mean standard deviation (

) are evaluated inside each ROI. An error metric ( ) is applied to assess reconstructions:

where , are the mean intensity and SD of a chosen ROI in the reconstructed TSC map and  the mean intensity in the same ROI of the GT. 
weights the SD against the quantification errors to find the result with lowest uncertainty (low ) without over smoothing (low

). The assessment method uses  to find an optimized sparsity weighting factor . To emulate multiple acquisitions, N
acquisitions with different white Gaussian noise distributions are simulated and reconstructed for every . The reconstruction with the lowest  score
determines  for the dataset. Simulations: The analytical calf phantom (see Fig. 1) was simulated with different undersampling factors (USF: 1, 3.2, 4.4,
6.7) and reconstructed with 3D-DLCS and nonuniform FFT with a Hamming filter (hNUFFT) for reference. Values for  were determined for each USF
(see Fig. 2) by the proposed method for optimized 3D-DLCS (optDLCS). Parameters: block-size: 3x3x2, dictionary size: 300. In vivo study: Na-MRI was
conducted on a 3-T whole body system (MAGNETOM Skyra, Siemens Healthcare GmbH, Erlangen, Germany). TSC maps were acquired from the right
calf muscle of four healthy volunteers (2 female, 2 male, 28 +/- 4.7 years old) with four reference tubes containing NaCl (10, 20, 30, 40 mMol/L) for
normalization. A density-adapted 3D radial acquisition sequence with an anisotropic field of view  was used to acquire images with a nominal spatial
resolution of 3x3x15mm . Acquisition Parameters: TE/ TR = 0.30/150 ms; α = 90°; readout duration TRO = 10 ms. TSC maps with the same USFs as used
in the simulations were acquired and the same reconstruction parameters were applied (Acquistion times (TA): USF=1: 22:42 min, USF=3: 6:53 min,
USF=5: 4:40 min, USF=7: 3:05 min). The most suitable sparsity weighting factor  determined in the simulations for each USF was chosen for the
optDLCS reconstructions (see Fig. 2).

Results
For simulations, the  stays below 5% for TSC maps reconstructed with optDLCS. The SD and  is lower than using hNUFFT (see Fig. 3).
In the in vivo study the mean quantification error ( , USF = 1 as reference) stays within 3% using optDLCS for USF = 3, 4.4 (USF 6.7: 6%, see Fig.
4). hNUFFT reconstructions with USF > 1 yield a  of more than 5% and a higher SD than optDLCS. The increases of  and SD with
increasing USF are more pronounced for hNUFFT compared to optDLCS (see Fig. 4).

Conclusion
In this work, we demonstrated that it is possible to accurately quantify TSC from undersampled Na-MRI data using 3D-DLCS with priorly optimized
parameters. Application of the method for undersampled in vivo TSC maps show promising results, which might enhance clinical applicability of sodium
quantification using Na-MRI.

Acknowledgements
No acknowledgement found.

1,2 1 3 1 2,4 1

1

1 2

3

4

1,2 23 2 23

3 4,5

23

6

6,7

mxEnorm mEnorm

mSDnorm em

em = = , i ϵ [1, #ROI],(mx + (m + (mSEnorm)2 Enorm)2 Dnorm)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√ max + mean +( )
−X

¯ ¯¯̄
i X

¯ ¯¯̄
i,ref

X
¯ ¯¯̄

i,ref

2

( )
−X

¯ ¯¯̄
i X

¯ ¯¯̄
i,ref

X
¯ ¯¯̄

i,ref

2

( )σi

X
¯ ¯¯̄

i,ref

2− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⎷


,Xi σi Xi,ref em

mSDnorm

m , mxEnorm Enorm em λem

λ em

λem

λem
23

8

3

λem

mEnorm mEnorm

mEref

mEref mEref

23

23



7.11.2018 https://submissions.mirasmart.com/ISMRM2019/ViewSubmission.aspx?sbmID=4106

https://submissions.mirasmart.com/ISMRM2019/ViewSubmission.aspx?sbmID=4106 2/3

References
1. Amarteifio E, Nagel AM, Weber M-A, Jurkat-Rott K, Lehmann-Horn F. Hyperkalemic periodic paralysis and permanent weakness: 3-T MR imaging

depicts intracellular 23 Na overload-initial results. Radiology. 2012;264(1):154-163.
2. Weber, M, Nagel AM, Jurkat-Rott K L-HF. Sodium ( 23 Na ) MRI detects elevated muscular sodium concentration in Duchenne muscular

dystrophy. Neurology. 2011;77(23):2017-2024.
3. Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging. 2013;38(3):511-529.
4. Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 2008;25:72-82.
5. Gnahm C, Nagel AM. Anatomically weighted second-order total variation reconstruction of Na MRI using prior information from 1H MRI.

Neuroimage. 2015;105:452-461.
6. Behl NGR, Gnahm C, Bachert P, Ladd ME, Nagel AM. Three-dimensional dictionary-learning reconstruction of 23 Na MRI data. Magn Reson Med.

2016;75:1605-1616.
7. Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA. Human Skeletal Muscle: Sodium MR imaging and quantification-potential

applications in exercise and disease. Radiology. 2000;216(2):559-568.
8. Nagel AM, Weber M-A ,Wolf WS. 3D density-adapted projection reconstruction Na-MRI with anisotropic resolution and field-of-view. In: Proc Intl

Soc Mag Reson. 2012; pp. 674. 4.

23

23

Figures

Figure 1: Simulated phantom based on a high-resolution H-image of a human calf with assigned Na-concentrations: fat tissue: 10 mMol/L, blood
vessels: 80 mMol/L, muscle tissue: 12-25 mMol/L; natural fluctuations in muscle tissue are simulated by using three different regions (ROI1: 20 mMol/L,
ROI2: 15 mMol/L, ROI3: 17 mMol/L, ROI4: 12 mMol/L). Four reference tubes (10, 20, 30, 40 mMol/L) are simulated below the calf for normalization.

 

Figure 2: (a) Determination of  for the considered USFs (1, 3, 4.4, 6.7 ) by evaluating  for N repetitive, simulated measurements with random noise
distributions (N = 50 for USF = 2, 5, 7 and N = 20 for USF = 1). (b) Reconstructions with  yield a low  of below 5% for all USFs and a low SD
over all repetitions.
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Figure 3: (a) TSC values for the simulated TSC maps in four different ROIs (see Fig. 1) using the hNufft and optDLCS reconstruction. Black lines
correspond to the GT. The concentration error as well as the SD are lower for optDLCS. Qualitative comparison of reconstruction results are shown for
hNUFFT (b) and optDLCS (c). TSC maps appear less noisy for optDLCS compared to hNUFFT.

 

Figure 4: Quantification results for four healthy volunteers (two female, two male, 23-35 yrs. old). hNUFFT and optDLCS reconstructions with ROIs for
quantification are shown in the first and last column (USF = 1). TSC values for three ROIs are depicted in the boxplots in columns two to five. The USF is
increased from left to right decreasing the acquisition time (TA). optDLCS reconstructions yield a low difference between fully sampled and undersampled
TSC quantification results, while maintaining a low SD in comparison to hNUFFT reconstructions.
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