3-D OCT Motion Correction Efficiently Enhanced with OCT Angiography

Stefan B. Ploner, MF Kraus, L Husvogt, EM Moult, AY Alibhai, J Schottenhamml, T Geimer, C Rebhun, B Lee, CR Baumal, NK Waheed, JS Duker, JG Fujimoto, AK Maier

ARVO Annual Meeting 2018

New England Eye Center

Motivation

Distortion between B-scans

Aims of Motion Correction

- Arbitrary slicing
- Accurate & reproducible disease metrics
- Directly compare with follow-up scans
- Prevent gaps from blinks and saccades

not corrected motion corrected

Registration-based Motion Correction

M

Stefan B. Ploner | Pattern Recognition Lab, FAU Erlangen | 3-D OCT Motion Correction Efficiently Enhanced with OCTA

Scan Alignment vs. Motion Correction

	Alignment	Motion Correction
Align scans	\checkmark	
SNR improvement	A 10 and 10 a	
Correct distortions	*	

Stefan B. Ploner | Pattern Recognition Lab, FAU Erlangen | 3-D OCT Motion Correction Efficiently Enhanced with OCTA

Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization

Martin F. Kraus,^{1,2,3,*} Jonathan J. Liu,³ Julia Schottenhamml,¹ Chieh-Li Chen,^{6,7} Attila Budai,^{1,2} Lauren Branchini,⁴ Tony Ko,⁵ Hiroshi Ishikawa,^{6,7} Gadi Wollstein,⁶ Joel Schuman,^{6,7} Jay S. Duker,⁴ James G. Fujimoto² and Joachim Hornegger^{1,2} **Biomedical Optics EXPRESS**

¹Pattern Recognition Lab, University Erlangen-Nürnberg, D-91058 Erlangen, Germany
²School of Advanced Optical Technologies (SAOT), University Erlangen-Nürnberg, D-91058 Erlangen, Germany
^aDepartment of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁴New England Eye Center and Tufts Medical Center, Tufts University, Boston, MA 02116, USA ⁴Optoruse Inc., Fremont, CA 94538, USA; ⁶Department of Ophthalmology, UPMC Eye Center, Pittsburgh, PA 15213, USA ⁷Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PI, USA ⁸martin. Instauc⁶(fau. de)

Abstract: Variability in illumination, signal quality, tilt and the amount of motion pose challenges for post-processing based 3D-OCT motion

Key properties:

Orthogonal scan based

Key properties:

- Orthogonal scan based
- Full 3-D per A-scan displacement field

A-scan center
3-D displacement
(One displacement field *per volume*.)

- V_i: OCT volumes
- D: displacement field

Key properties:

- Orthogonal scan based
- Full 3-D per A-scan displacement field
- Gradient-based optimizer (L-BFGS)

Key properties:

- Orthogonal scan based
- Full 3-D per A-scan displacement field
- Gradient-based optimizer
- Physiologically reasonable displacements (*R*)

Why add angiography data?

OCT data

High axial contrast

Low contrast in transverse dir.

High contrast in transverse dirs.

05/02/2018

Efficient Use of Angiography Data

- OCTA adds little information along depth
- Use 2-D en-face OCTA projections

Fast Computation of OCTA Projections

Layer segmentation based

- Best quality
- Slow to compute

Our approach

- Fast to compute
- Not as nice, but sufficient

05/02/2018

Fast Computation of OCTA Projections

Fast Computation of OCTA Projections

Corrupted OCTA Data

OCTA validity

• Fall back to OCT only for saccadic B-scans

05/02/2018

En-face OCTA

$$\min_{D} (1 - \mathbf{A}) \cdot \mathbf{D}(V_1, V_2, D) + \mathbf{A} \cdot \mathbf{D}(A_1, A_2, D) + \alpha \cdot \mathbf{R}(D)$$

OCT term OCTA term

Evaluation

Qualitative Evaluation, OCT Data Only

Stefan B. Ploner | Pattern Recognition Lab, FAU Erlangen | 3-D OCT Motion Correction Efficiently Enhanced with OCTA

Qualitative Evaluation, with OCTA Data

Qualitative Evaluation, with OCTA Data

	OCT	OCTA	NIN I		$X \mapsto$	Star .
Scan 1		In the fractions in the fraction of the fracti	n the evaluation tion of success increased from	n dataset, sful registrations n 75% to 93%		S C
			# subjects	# registrations	# failed	1 122
Scan 2		Normal	10	60	1	
		Pathological (*)	7	42	6	
		Total	17	102	7	XX
	Ali	(*) NAION, Dry AN	/ID, AMD w/ G	A, DM no DR, PDF	R w/ DME	KS

20

Quantitative Evaluation

• Metrics related to clinically relevant features

Depth position of ILM

Vessel maps

Alignment Performance

05/02/2018

Motion Correction Performance

- Independent corrections
 - same eye, different motion
- Motion corrected volumes agree (they are *reproducible*)

Vessel Map Difference over OCTA Weight

Alignment performance

Motion correction performance

Stefan B. Ploner | Pattern Recognition Lab, FAU Erlangen | 3-D OCT Motion Correction Efficiently Enhanced with OCTA

Vessel Map Difference over Regularization Weight

Alignment performance

Mr

Motion correction performance

05/02/2018

25

Conclusions

- OCTA data can improve
 - reliability and
 - accuracy of motion correction.
- En-face OCTA is sufficient and can be computed quickly.
- Motion correction evaluation reveals that the anisotropic nature of OCT scanning should be modeled.

Collaborators

- Friedrich-Alexander-Universität
 - Joachim Hornegger
 - Lennart Husvogt
 - Martin Kraus
 - Andreas Maier
 - Julia Schottenhamml
- Massachussetts Institute of Technology
 - James Fujimoto
 - ByungKun Lee
 - Chen Lu
 - Eric Moult

- Ben Potsaid
- Patrick Yiu
- New England Eye Center

- Yasin Alibhai
- Caroline Baumal
- Jay Duker
- Eduardo Novais
- Carl Rebhun
- Nadia Waheed

Thank you for your attention.

30

ILM depth over regularization weight

Registration Performance

20 20 OCT only Mean Error (μm) 5 01 21 Error (μ m) ✓with OCTA 15 10 Mean 5 0 $\left(\right)$ 0.001 0.01 0 0.001 0.1 0.01 0.1 0 α_{0} α_0 Digital resolution: 4.5 μm , segmentation pixel accurate only -> we cannot reach $0\mu m$ Stefan B. Ploner | Pattern Recognition Lab, FAU Erlangen | 3-D OCT Motion Correction Efficiently Enhanced with OCTA 05/02/2018

Reproducibility Performance

Hardware vs. Software Motion Correction

Hardware

- Operates on lower frequency / lower resolution surrogate signal
- Drastically reduces gap size, small gaps may remain due to limited accuracy
- Single scan suffices

Software

- Operates on full OCT resolution
- Small gaps can remain if they were not scanned in any scan
- Delay due to computation time
- SNR improvement through averaging
- Device independent
- Can be applied & optimized
 retrospectively if all scans were stored

05/02/2018

Combine both for best reliability & accuracy.

Parallel scans

- No reference along slow scan axis, displacements can at best be averaged
- Trivial application to widefield scans
- Gap overlap unlikely
- If gaps remain, whole slices are missing, extent unknown

Orthogonal scans

- Fast scans along both axes allow for accurate motion correction
- Non-trivial application to widefield scans
- When using two scans, gaps from different scans always have a known, small overlap

- Unknown extent in fast scan dir.
 A third a due to missing reference
 advanta
- A third scan combines the advantages

05/02/2018

Stefan B. Ploner | Pattern Recognition Lab, FAU Erlangen | 3-D OCT Motion Correction Efficiently Enhanced with OCTA