

Double Your Views – Exploiting Symmetry in Transmission Imaging

Alexander Preuhs¹, Andreas Maier¹, Michael Manhart², Javad Fotouhi³, Nassir Navab³, and Mathias Unberath³

¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

²Siemens Healthcare GmbH, Forchheim, Germany

³Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, USA

Purpose

State of the Art:

- Symmetry is a widely used concept in computer vision
- In the medical context, knowledge of symmetry plane can be used for various tasks:
 - Alignment of volumes
- Detection of "symmetry breakers" e.g. tumors
 Comparison of blood flow in perfusion imaging
 Symmetry has never been inspected for transmission imaging
 <u>Contribution:</u>
 Projection-based approach to estimate the plane of symmetry
 A novel X-trajectory for symmetric objects that enables:

The X-Trajectory

- With the symmetry transformation \mathbf{F} we can **generate** a **virtual**
- Tuy-complete imaging with a short scan
- Estimation of in-plane motion in the projection domain

Symmetry Plane Estimation

Having a plane symmetric object, **two distinct views** exhibit the very **same projection** of this object. This property is **exploited** to find the **plane of symmetry**. This is achieved by **enforcing geometric consistency** of a pair of projections, i.e. an acquired view and a virtual mirrored view.

Measure of Consistency: Epipolar Consistency (EC)

- The epipolar lines of two projections constitute a weighted plane integral of the underlying epipolar plane (cf. Fig. 1)
- **Grangeat's theorem** constitutes that both lines **must be equal** (after transformation, mainly integration and derivation)
- This is used to evaluate the geometric consistency of two views

- trajectory, with known projection images
- The acquired and augmented trajectory will form the Xtrajectory depicted in Fig. 3.

Figure 3: X-trajectory formed by acquired (blue dots) and virtual (gray dots) trajectory.

- With adequate tilt between the trajectory planes:
 - X-trajectory is **Tuy-complete**
 - In-plane motion is detectable by EC

Results

Figure 1: Schematic drawing of a two view geometry with drawn epipolar lines.

Symmetric View Augmentation

- The scene in Fig. 2 is plane symmetric under transformation ${f F}$
- In the trivial case, ${\bf F}$ just flips the sign of the ${\bf x}$ component
- We can find the plane of symmetry by finding a geometry PF, that most consistently describes a projection acquired under P

Symmetry Plane Estimation

- 1. Accuracy on synthetic data in range $\sim 10^{-4}$ mm/degree
- 2. Well defined on anthropomorphic head phantom (cf. Fig. 4)

Figure 4: Aligned reconstruction of anthropomorphic head phantom with estimated symmetry plane (Artis zeego, Siemens Healthcare GmbH, Forchheim, Germany).

Application to Rigid Motion

- Motion impulse applied separately in all 6 DoF
- In-plane motion is not detected using conventional EC (cf. Fig. 5)
- In-plane motion becomes detectable on X-trajectory

Figure 2: Visualization of a plane symmetric scene.

Figure 5: Consistency plots with white color encoding detected consistency. **Upper row**: no tilt between mirrored and acquired trajectory. **Lower row**: X-trajectory with 60° tilt ($2\alpha = 60^{\circ}$). Each plot shows the **conventional EC in the lower left** triangle of the grid, and the **consistency of the X-trajectory in the upper right triangle**.

Contact

Alexander Preuhs Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Alexander.Preuhs@fau.de+49 9131 85 56 58 68

Disclaimer:

The concepts and information presented in this poster are based on research and are not commercially available