Healthineers

Double Your Views - Exploiting Symmetry in Transmission Imaging

Alexander Preuhs ${ }^{1}$, Andreas Maier ${ }^{1}$, Michael Manhart², Javad Fotouhi3 , Nassir Navab ${ }^{3}$, and Mathias Unberath ${ }^{3}$ ${ }^{1}$ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
${ }^{2}$ Siemens Healthcare GmbH, Forchheim, Germany
${ }^{3}$ Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, USA

Purpose

State of the Art:

- Symmetry is a widely used concept in computer vision
- In the medical context, knowledge of symmetry plane can be used for various tasks:
- Alignment of volumes
- Detection of "symmetry breakers" e.g. tumors
- Comparison of blood flow in perfusion imaging
- Symmetry has never been inspected for transmission imaging Contribution:
- Projection-based approach to estimate the plane of symmetry
- A novel X-trajectory for symmetric objects that enables:
- Tuy-complete imaging with a short scan
- Estimation of in-plane motion in the projection domain

Symmetry Plane Estimation

Having a plane symmetric object, two distinct views exhibit the very same projection of this object. This property is exploited to find the plane of symmetry. This is achieved by enforcing geometric consistency of a pair of projections, i.e. an acquired view and a virtual mirrored view.

Measure of Consistency: Epipolar Consistency (EC)

- The epipolar lines of two projections constitute a weighted plane integral of the underlying epipolar plane (cf. Fig. 1)
- Grangeat's theorem constitutes that both lines must be equal (after transformation, mainly integration and derivation)
- This is used to evaluate the geometric consistency of two views

Figure 1: Schematic drawing of a two view geometry with drawn epipolar lines.

Symmetric View Augmentation

- The scene in Fig. 2 is plane symmetric under transformation F
- In the trivial case, \mathbf{F} just flips the sign of the x component
- We can find the plane of symmetry by finding a geometry PF, that most consistently describes a projection acquired under P

Figure 2: Visualization of a plane symmetric scene.

Flowchart: Processing sequence. Light gray denote steps using epipolar consistency.

The X-Trajectory

- With the symmetry transformation F we can generate a virtual trajectory, with known projection images
- The acquired and augmented trajectory will form the Xtrajectory depicted in Fig. 3.

Figure 3: X-trajectory formed by acquired (blue dots) and virtual (gray dots) trajectory. - With adequate tilt between the trajectory planes:

- X-trajectory is Tuy-complete
- In-plane motion is detectable by EC

Results

Symmetry Plane Estimation

1. Accuracy on synthetic data in range $\sim \mathbf{1 0}^{\mathbf{- 4}} \mathbf{~ m m} /$ degree
2. Well defined on anthropomorphic head phantom (cf. Fig. 4)

Figure 4: Aligned reconstruction of anthropomorphic head phantom with estimated symmetry plane (Artis zeego, Siemens Healthcare GmbH, Forchheim, Germany).

Application to Rigid Motion

- Motion impulse applied separately in all 6 DoF
- In-plane motion is not detected using conventional EC (cf. Fig. 5)
- In-plane motion becomes detectable on X-trajectory

Figure 5: Consistency plots with white color encoding detected consistency. Upper row: no tilt between mirrored and acquired trajectory. Lower row: X-trajectory with 60° tilt ($2 \alpha=60^{\circ}$). Each plot shows the conventional EC in the lower left triangle of the grid, and the consistency of the X-trajectory in the upper right triangle.

Contact

\square Alexander Preuhs

GCPR 2018

MICCAI

