

FACULTY OF ENGINEERING

Viewpoint Planning for Quantitative Coronary Angiography

Alexander Preuhs¹, Martin Berger², Sebastian Bauer², Thomas Redel², Mathias Unberath¹,

Stephan Achenbach³, and Andreas Maier¹

¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

²Siemens Healthcare GmbH, Forchheim, Germany

³Department of Cardiology, Universitätsklinikum Erlangen, Erlangen, Germany

Purpose

Coronary Angiography:

- Assessment of coronary blood supply by **2-D** X-ray projections of contrasted arteries
- Immanent dimensionality

Evaluation of Foreshortening

Figure 3: Heatmap showing the maximal foreshortening in the second view for vessels having an initial foreshortening of $\nu_1 = 30^{\circ}$.

		30 30 30 30 30 30 30 3	30 30 30 30 30 30 30 30	30 30 30 30 30 30 30 30 30 30 30 30 30 3	31 31 31 31 31 31 31 31 31 31 3	31 31 31 31 32 32 32 32	32 32 32 32
		30 30 30 30 30 30 30 3	30 30 30 30 30 30 30 30	30 30 30 30 30 30 30 30 30 30 30 30 30 3	30 30 30 30 30 30 31 31 31 3	31 31 31 31 31 31 31 31 31	32 32 32 32
	15	29 29 29 29 29 29 29 2	29 29 29 29 29 29 29 29	29 29 29 29 29 29 29 29 29	30 30 30 30 30 30 30 30 30 3	30 30 30 30 30 31 31 31	31 31 31 31
		28 28 28 28 28 28 28 2	28 28 28 28 28 28 28 28	28 28 28 28 28 28 29 29 2	29 29 29 29 29 29 29 29 29 29 2	29 29 29 29 30 30 30 30	30 30 30 30
		27 27 27 27 27 27 27 2	27 27 27 27 27 27 27 27	27 27 27 27 27 27 27 27 27 27 27 27 27 2	28 28 28 28 28 28 28 28 28 28 2	28 28 28 28 28 28 28 29 29	29 29 29 29
	30	26 26 26 26 26 26 2	26 26 26 26 26 26 26 26	26 26 26 26 26 26 26 26 26	26 26 26 26 26 26 26 27 27 2	27 27 27 27 27 27 27 27 27	27 27 28 28
		24 24 24 24 24 24 24 2	24 24 24 24 24 24 24 24	24 24 24 24 25 25 25 25	25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25 26 26 26	26 26 26 26
		23 23 23 23 23 23 23 2	23 23 23 23 23 23 23 23	23 23 23 23 23 23 23 23 23 23	23 23 23 23 23 23 23 23 23 23 2	23 23 23 24 24 24 24 24 24	24 24 24 24
Ś	20	01 01 01 01 01 01 0		01 01 01 01 01 01 01			

▲ 24 _S

2nd View

May

- reduction by projection
- Viewpoint is critical to guarantee appropriate view on affected artery

Aim:

Compute optimal viewpoints for assessment of coronary arteries (Fig. 1)

Figure 1: Visualization of coronary arteries and two optimal views. The views are rotated around an axis and orthogonal to the vessel of interest.

Material and Methods

We introduce the **concept of optimal viewpoint planning** solely based on a single angiographic X-ray image (cf. Fig. 2).

- 1. **Principal ray alignment:**
 - If vessel is **not** on the **central ray**, it is already observed from a certain cone angle
 - This is **corrected** by the principal ray alignment
- **Isocenter rotation:** 2.
 - A rotation axis is defined that is **incident to the iso**-center and has the same orientation as the vessel
 - The aligned **view is angulated** around the rotation axis, by a **physician determined angle**

Figure 4: Plots depicting ϵ as a function of ξ . The two plots in the left column correspond to the algorithm with skipped translation, and the two plots in the right column correspond to the full algorithm.

- **Isocenter offset correction:** 3.
 - If the **rotation axis** is not the **actual vessel**, then we rotate around the wrong rotation center
 - The isocenter offset minimizes this error by an additional translation

Figure 2: Flowchart showing the proposed viewpoint planning. The input is a line defined on the detector, the output is the proposed optimal viewpoint for the C-arm.

Figure 5: Top Row: input views for QCA generation. The initial view (a), a second view generated using the proposed viewpoint planning with $\xi = 35^{\circ}$ (b), and a manual selected view (c). Bottom: Area curves deduced from a 3-D QCA using two input views.

Evaluation and Results

- The **precision** of the algorithm (foreshortening in second view v_2) and deviation from desired rotation ϵ) depends on the input **view** (initial foreshortening v_1) and the desired rotation ξ
- We evaluate the algorithm regarding its reliability within a clinical workflow (Fig. 3-5)

Discussion and Conclusion

- No need for 3-D models as necessary for all previous methods
- Workflow seamlessly integrates into current clinical workflow
- Standardizes viewpoints to guarantee high quality QCA
- Helpful **navigation** tool especially for novice physicians

Contact

Alexander Preuhs Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Alexander.Preuhs@fau.de +49 9131 85 56 58 68

Disclaimer:

The concepts and information presented in this poster are based on research and are not commercially available

