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Abstract. The connective tissue between fat and muscle termed fascia
has been of interest to the recent clinical and biological research. How-
ever, in the canine and human medicine, the anatomic knowledge is still
limited. To analyze the superficial fascia in canine medicine, a database
with around 200 ultrasound images of one dog has been created. The
superficial fascia contains fat compartments and is closely connected to
the surrounding structures such as the skin’s dermis and the epimysium
of the muscles. This work proposes a semi-automatic and fully-automatic
segmentation algorithm separating the different layers of ultrasound im-
ages of canine. Both algorithms were evaluated on a set of 24 expert-
labeled images achieving high accuracy scores up to 95.9 %.

1 Introduction

Fascias play an important role for the stabilization of the body of humans or
animals and when fascias get overstressed, pain can be encountered. In that
case, a common modality used for diagnosis of the fascia is ultrasound imaging,
which works in real-time, causes no radiation exposure and is portable and cost-
efficient [1,2]. One drawback of ultrasound imaging is that it is highly depended
on the skills of the operator. Moreover, the quality of the images can be affected
by the presence of various artifacts [3,4] which might lead to edge diffusion, mak-
ing clinical diagnosis and biometric measurements more challenging.
A very important task in medical image analysis is segmentation. Usually, this

technique is used to locate objects and boundaries in images. Segmentation of
medical ultrasound images is considered as a challenging task due to the occur-
ring artifacts. Although there exist many segmentation approaches of ultrasound
images (e. g. the method for segmentation of ultrasound images of plantar fascia
proposed by Boussouar et al. [5]), the knowledge on segmentation approaches in
the field of human and canine medicine is still limited. Commonly, ultrasound
images of dogs contain four layers: skin, fat , fascia and muscles (cf. Fig. 1). Our
work presents two approaches – a semi-automatic and a fully-automatic algo-
rithm – separating the four layers by subsequently segmenting the fat and the
fascia layer in ultrasound images of dogs. We evaluate our proposed algorithms
on a database consisting of 200 ultrasound images of one dog. The database was
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Fig. 1. An ultrasound image of a dog showing its skin, fat, fascia and muscles.

created by an expert measuring all body parts of the animal. We think that
biologists working in the area of fascia research can highly benefit from our work
as we will provide an open-source GUI. In addition, the resulting labeled images
can be used for developing machine learning algorithms.

2 Materials and Methods

2.1 Pre-processing

Since ultrasound images tend to suffer from speckles, noise and other artifacts,
we have to pre-process the input to enhance the image quality before the actual
segmentation is performed. Since fascias are rather thin, it is important that the
applied filters preserve edges.

The first pre-processing step is to apply Bilateral filtering. A Bilateral fil-
ter [6] is a non-linear filter commonly used in image processing to reduce noise
in an image while preserving edges. The filter replaces the intensity of each pixel
with a weighted average of intensity values from close pixels. Those weights
w (x, y) depend on the pixels’ geometric and photometric distances. To reduce
the runtime, we used parallel programming techniques. We also tested Guided
filtering [7], however, the results for the Bilateral filter were more accurate.

In canine ultrasound images, fascias look similar to white vessels (cf. Fig. 1).
In addition, fat can be also considered as a thick dark tubular structure. Frangi et
al. [8] proposed an approach which achieved good results for vessel segmentation.
First, the image is pre-smoothed with a Gaussian filter of scaling si = (sx, sy).
Then, the eigenvalues λ1 and λ2 of the Hessian H (x, y) are computed at each
pixel (x, y). Let us assume that the absolute value of the first eigenvalue λ1
is larger than λ2 and λ2 ≈ 0. Then, a good model for vessels is achieved if
RB = λ2/λ1 → 0 and S =

√
λ21 + λ22 is high. Calculating
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yields to a probability for the vessel where β and c denote control parameters that
depend on the gray scale (β = 0.5 and c = 4). The calculations are performed for
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different scalings si. The actual Vesselness is then given as the maximum over all
Vesselness images for the scalings si. Fig. 2 shows an example ultrasound image
(Left) and the output after applying the pre-processing steps (Right).

Fig. 2. (Left) Canine ultrasound image. (Right) Pre-processed image – Output after
Bilateral and Vesselness filtering.

2.2 Fat Segmentation

Within the semi-automatic approach, the user can decide in which region of
interest (ROI) the fat layer is located. Usually, fat can be delimited using a
rectangular box aligned to the x- and y-axes of the image, where the uppermost
y-coordinate does not variate from the lowermost y-coordinate by a huge number.
The user sets the ROI by giving both delimiting y-coordinates as arguments.

In the automatic approach, this step is performed by a customized algorithm
instead. First, for each row in the Vesselness image, we compute the amount of
pixels n smaller than a certain threshold εFat within the row and store those
values in a histogram. For the fat layer, n tends to be high. Knowing that the
fat layer is usually located in the upper part of the image, we can restrict the
histogram to the upper part of our image. Then, we are searching for the minima
close to the global maximum inside the restricted region. This maximum corre-
sponds to the center of the fat layer. Since the Vesselness measure gets higher
at the boundary of the fat image, a good approach to find the rows delimiting
the fat layer would be to search for minima close to the global maximum. In
order to prevent arriving at too high minima, high local minima are deprecated.
Afterwards, the Vesselness measure at each pixel within the ROI is compared
to a pre-defined threshold. If the Vesselness value at a pixel within the ROI is
lower than the threshold, the pixel is classified as fat, otherwise as no-fat-area.

Since the quality of the segmentation can still be corrupted by small artifacts,
several post-processing steps are applied to the segmented image. The first step
in this pipeline is to remove smaller artifacts by applying morphological opera-
tors like dilation and erosion [9]. Additionally, some segmented images tend to
have a top layer which does not belong to the actual fat layer. Usually, if the
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most pixels of the upper boundary of the top layer are also located at the upper
boundary of the rectangular box, the pixels can be classified as top-layer-pixels.
The remaining parts of the top layer can be removed by applying another di-
lation step. Afterwards, the image might have some gaps inside the fat layer
due to occlusion. Those gaps have to be removed since the fat layer has to be
homogeneous. For this purpose, each column of the image is traversed and sub-
divided into intervals where each pixel has been classified as fat. The remaining
no-fat regions in the column apart from the uppermost and the lowermost no-fat
regions are then filled with the color corresponding to the fat layer. Finally, the
image is smoothed by applying median filtering.

2.3 Fascia Segmentation

The semi-automatic approach for fascia segmentation is similar to our fat seg-
mentation approach. Again, within the semi-automatic approach the user has to
define a ROI where the fascia is located. Since the lower boundary of fat cor-
responds to the upper boundary of the fascia, only the lower boundary of the
fascia has to be defined by the user. However, a rectangular box does usually not
model fascias correctly. Instead, a good model to delimit the fascia is given by
two intersecting straight lines (cf. Fig. 3 (Left)). The left straight line intersects
the points (0, yl) and (xc, yc). The right straight line intersects the points (xc, yc)
and (w − 1, yr) where w is the width of the image. Within the semi-automatic
approach, the remaining four coordinates yl, xc, yc and yr are then given to the
segmentation algorithm as input parameters.

In the fully-automatic approach, this step is performed by a customized algo-
rithm similar to the one from automatic fat segmentation. Like fascias, muscles
tend to have a large Vesselness measure. However, fascias and muscles are sepa-
rated by a small layer of low Vesselness measures. The boundary between fascia
and muscle is then obtained by finding the rightmost local minimum within the
fascia-muscle region that is small enough. Afterwards, each pixel within the re-
sulting ROI has to be compared with the Vesselness measure at the same pixel.
If, and only if, the Vesselness image at a pixel is higher than a pre-defined thresh-
old, the pixel is classified as fascia. The resulting fascia is shown in the central
image of Fig. 3. However, since fascias are usually non-homogeneous, a linear
interpolation step is performed to get the complete area of the fascia. After-
wards, the image is smoothed by applying median filtering. The result is shown
in Fig. 3 (Right). Finally, thresholding can be applied to the interpolated im-
age to distinguish between fascial structures (high Vesselness measure) and fat
compartments within the fascia region (low Vesselness measure).

3 Experiments and Results

The proposed algorithms have been evaluated on a database with 213 ultrasound
images of one single dog, where 24 images have been manually segmented by an
expert. For the remaining 189 images, the semi-automatic segmentation has been



Fascia Segmentation in Ultrasound Images 5

Fig. 3. (Left) A model to delimit the fascia by two straight lines (yellow). (Center)
Segmented fascia structure. (Right) Interpolated area of the fascia.

Table 1. Performance measures for fully- and semi-automatic segmentation algorithm.

Measure Accuracy Sensitivity Precision Specificity F1 score

Semi-automatic fat 98.6% 78.6% 82.6% 99.4% 80.0%

Fully-automatic fat 98.4% 79.7% 80.7% 99.2% 78.8%

Semi-automatic fascia 95.9% 92.8% 76.4% 96.0% 83.1%

Fully-automatic fascia 93.8% 74.1% 78.6% 97.6% 72.1%

Semi-automatic combined 95.9% 93.3% 83.3% 96.1% 87.8%

Fully-automatic combined 93.6% 79.6% 84.1% 97.4% 79.8%

selected as the ground truth image. The given problem can be reduced to a two-
class task where positives are given by fat and fascia while negatives show the
background. Table 1 shows how our two presented algorithms performed on the
manually labeled dataset with respect to commonly used accuracy measures [10].
One can see, that the semi-automatic approach shows promising results with
a F1 score of 80.0 % for fat and 83.1 % for fascia segmentation whereas the
fully-automatic version has a F1 score of 78.8 % for fat and 72.1 % for fascia
segmentation. An example of the completed segmentation is visualized in Fig. 4.

4 Discussion and Outlook

We presented a semi- and a fully-automatic segmentation algorithm for fat and
fascia within ultrasound images of canines. We evaluated our developed algo-
rithms on a expert-labeled dataset of 24 images where the F1 score of the semi-
automatic approach (87.8 %) is higher than the fully-automatic’s (79.8 %), how-
ever, both algorithms perform well. We think that the proposed methods can be
very useful for biologists as well as computer scientists. Biologists do not need to
manually segment their images anymore and are able to measure fascia and fat
layers efficiently. Furthermore, the newly generated labeled data can be used as
a training set for future machine learning algorithms in fascia research. As the
fat and fascia layers of humans do not differ a lot from canines, the algorithms
can be easily extrapolated to ultrasound images of humans. The GUI will be
released with the publication of the paper.
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Fig. 4. (Top) Ground truth image. The fat and the fascia are delimited by the red lines.
(Center) Semi-automatic resulting segmentation. (Bottom) Fully-automatic resulting
segmentation. – Light Grey area denotes fat, dark gray are fat compartments within
the fascia and white area denotes fascia.
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