

Learning From A Handful Volumes: MRI Resolution Enhancement With Volumetric Super-Resolution Forests

Aline Sindel¹, Katharina Breininger¹, Johannes Käßer², Andreas Hess², Andreas Maier^{1,3}, Thomas Köhler^{1,3,4} ¹Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany ²Institute for Experimental & Clinical Pharmacology & Toxicology, FAU Erlangen-Nürnberg, Germany ³Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Germany ⁴e.solutions GmbH, Erlangen, Germany

Introduction

- High-resolution (HR) magnetic resonance imaging (MRI) enables 3-D imaging of delicate anatomical structures
- HR MRI can support e.g. the early detection of pathologies
- However, the HR MR acquisition leads to long scan times
- Reduce acquisition times while retaining high resolution
- Retrospective resolution enhancement of low-resolution (LR) MR volumes with volumetric super-resolution forests (VSRF)

Material and Methods

VSRF builds on random forest regression [1] to learn a locally linear mapping between LR and HR 3-D patches (Fig. 1).

Random Forest Training

- At each node: optimization of variance-based quality measure [1]
- At the leaves: learn mapping using ridge regression [1]

$$\hat{\mathbf{W}}_{l} = \operatorname*{argmin}_{\mathbf{W}_{l}} \|\mathbf{X}_{H}^{l} - \mathbf{W}_{l}\mathbf{X}_{L}^{l}\|_{2}^{2} + \lambda \|\mathbf{W}_{l}\|_{2}^{2}$$

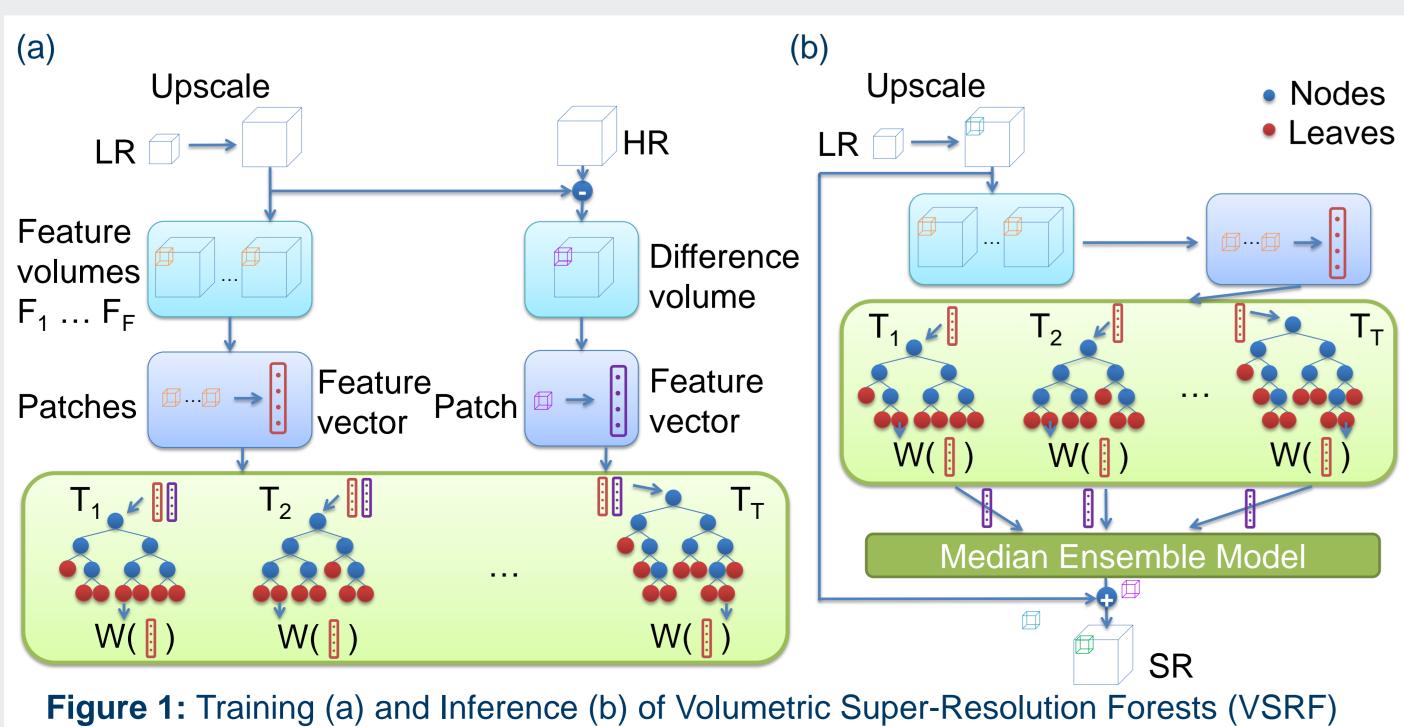
space λ : regularization parameter

Random Forest Inference

- LR feature vectors traverse each of the trees
- Median ensemble model to combine forest predictions

Feature and Patch Extraction

- Customized features (1st and 2nd order derivatives, edge magnitude and orientation) computed from upscaled LR volume
- Extract $n \times n \times n$ patches from feature and difference volumes
- PCA dimensionality reduction of LR feature vector



Results and Discussion

MRI Datasets

- Mouse brain (Train 13, Validation 3, Test 5 volumes)
- Kirby 21 human brain [2] (Train 10, Validation 2, Test 30 volumes)

Comparison of VSRF to State-of-the-Arts

- Considerably sharper than competing methods (Fig. 2,3)
- Achieves highest PSNR and SSIM [3] values (Tab. 1)

Influence of Parameters for VSRF

- Effectiveness even with a small amount of training data (Fig. 4a)
- Median ensemble model adds additional stability against outliers (Fig. 4b) compared to average ensemble
- Further improvements by customized features (Fig. 4b)

Table 1: Quantitative evaluation of image quality with mean peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [3] (SR factor 2).

Dataset	Measure	Tricubic	NLMU [4]	Psd. 3-D SRCNN		VANR	VA+	VSRF
Mouse	PSNR	34.94	36.94	36.82	38.63	37.69	38.75	39.46
Brain	SSIM	0.9637	0.9721	0.9680	0.9781	0.9750	0.9779	0.9804
Kirby 21	PSNR	34.84	36.58	36.10	36.48	35.59	36.06	37.15
Brain [2]	SSIM	0.9502	0.9662	0.9643	0.9659	0.9605	0.9650	0.9701

Tested methods: Tricubic upsampling, NLMU [4], Pseudo 3-D SRCNN / SRF (average of three slicewise applied 2-D SRCNN [5] / SRF [1]), VANR / VA+ (3-D extension of 2-D ANR [6] / A+ [7])

Conclusion

- Visual and quantitative improvement in image quality
- Fast training and inference performance
- Effective even with limited amount of training data
- Adaption into clinical workflows seems appealing

References

[1] S. Schulter et al. "Fast and accurate image upscaling with super-resolution forests," in Proc. IEEE CVPR 2015, 2015, pp. 3791-3799. [2] B. A. Landman et al. "Multi-parametric neuroimaging reproducibility: A 3-T resource study," NeuroImage, vol. 54,

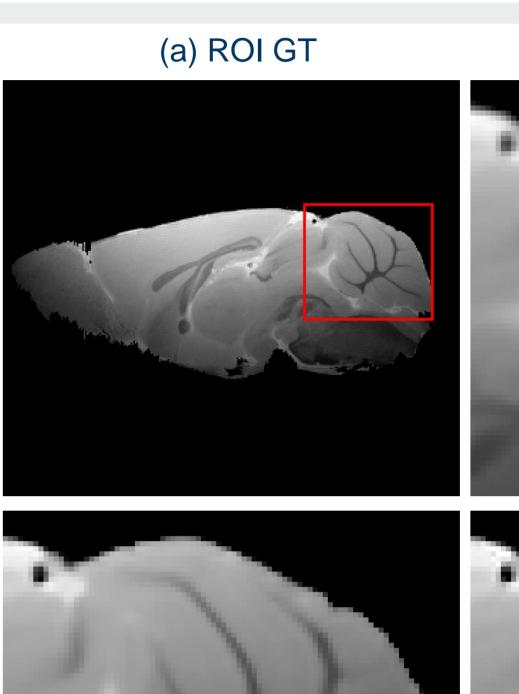
no. 4, pp. 2854 – 2866, 2011.

[3] Z. Wang et al. "Image quality assessment: from error visibility to structural similarity," IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, 2004.

[4] J. V. Manjón et al. "Non-local MRI upsampling," Med. Image Anal., vol. 14, no. 6, pp. 784–92, 2010. [5] C. Dong et al. "Learning a deep convolutional network for image super-resolution," in Proc. ECCV 2014, 2014, pp. 184–199.

[6] R. Timofte et al. "Anchored neighborhood regression for fast example-based super-resolution," in Proc. IEEE ICCV 2013, 2013, pp. 1920–1927.

[7] R. Timofte et al. "A+: Adjusted anchored neighborhood regression for fast super-resolution," in Proc. ACCV 2014, 2015, pp. 111–126.



(e) Pseudo 3-D SRF

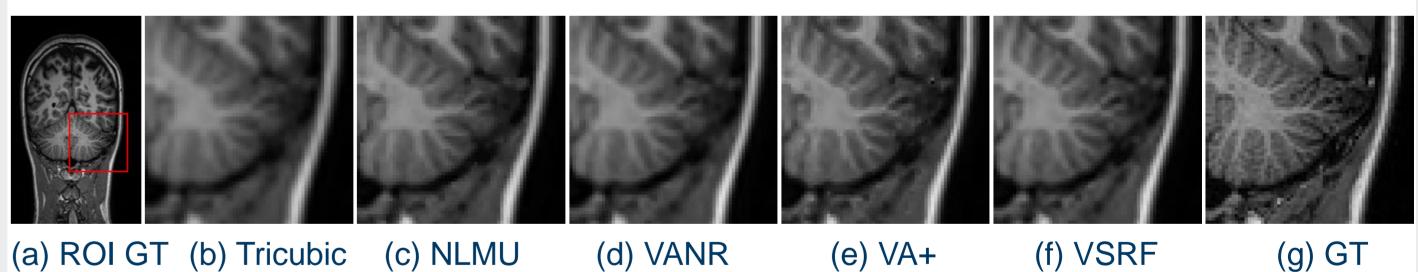


Figure 3: Coronal slice of the human brain Kirby 21 MRI dataset [2] (SR factor 2).

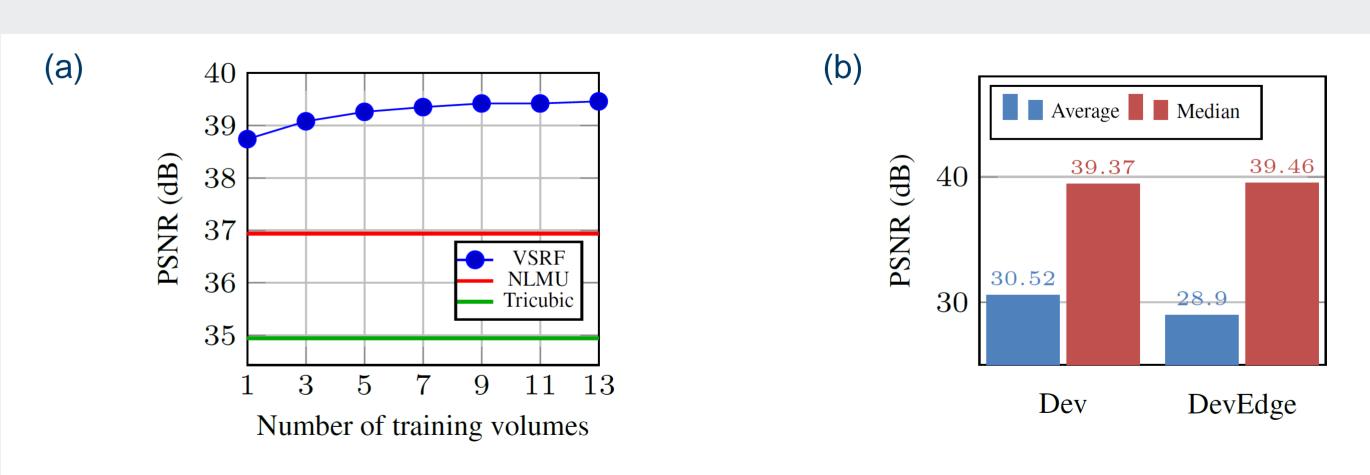


Figure 4: Influence of the number of (a) training volumes, (b) features and the ensemble model.

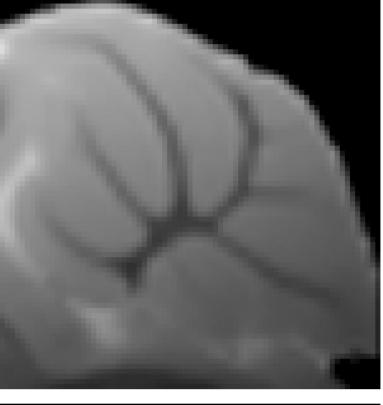
Contact

🛛 aline.sindel@fau.de 🕢 https://www5.cs.fau.de 🛛 🕢 https://github.com/asindel/VS

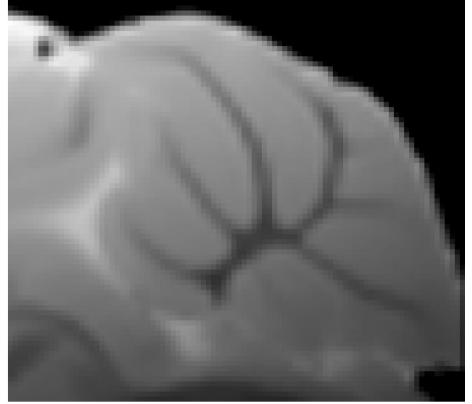
FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

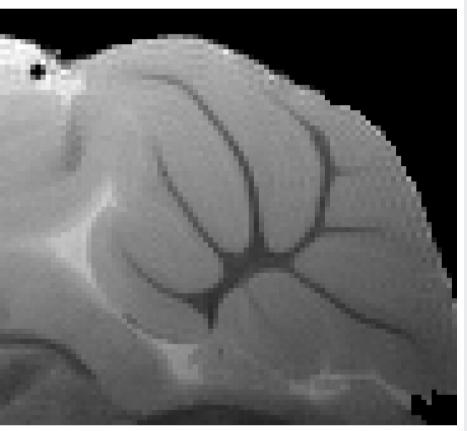
FACULTY OF ENGINEERING

(b) Tricubic



(c) Pseudo 3-D SRCNN





(g) Ground Truth (GT) (f) VSRF Figure 2: Sagittal slice of the mouse brain MRI dataset (SR factor 2).

(d) VANR

(f) VSRF

Source Code