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Introduction

» High-resolution (HR) magnetic resonance imaging (MRI) enables
3-D imaging of delicate anatomical structures

 HR MRI can support e.g. the early detection of pathologies

* However, the HR MR acquisition leads to long scan times

* Reduce acquisition times while retaining high resolution

» Retrospective resolution enhancement of low-resolution (LR) MR
volumes with volumetric super-resolution forests (VSRF)

Material and Methods

VSRF builds on random forest regression [1] to learn a locally linear
mapping between LR and HR 3-D patches (Fig. 1).

Random Forest Training
» At each node: optimization of variance-based quality measure [1]
» At the leaves: learn mapping using ridge regression [1]

INEN

W, = argmin || X}, — WXL |2+ A W|[2 LR 7],
W, space

10 HR
ﬂ space
X, X
A: larizati t
Random Forest Inference regularization parameter
* LR feature vectors traverse each of the trees

* Median ensemble model to combine forest predictions

Feature and Patch Extraction

e Customized features (15t and 2"9 order derivatives, edge
magnitude and orientation) computed from upscaled LR volume

 Extract x x patches from feature and difference volumes

 PCA dimensionality reduction of LR feature vector
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Figure 1: Training (a) and Inference (b) of Volumetric Super-Resolution Forests (VSRF)

Results and Discussion

Conclusion

(a) ROI GT

(b) Tricubic (c) Pseudo 3-D SRCNN

MRI Datasets
 Mouse brain (Train 13, Validation 3, Test 5 volumes)
» Kirby 21 human brain [2] (Train 10, Validation 2, Test 30 volumes)

Comparison of VSRF to State-of-the-Arts

» Considerably sharper than competing methods (Fig. 2,3)
* Achieves highest PSNR and SSIM [3] values (Tab. 1)

Influence of Parameters for VSRF

« Effectiveness even with a small amount of training data (Fig. 4a)

 Median ensemble model adds additional stability against outliers
(Fig. 4b) compared to average ensemble

* Further improvements by customized features (Fig. 4b)

Table 1: Quantitative evaluation of image quality with mean peak signal-to-noise ratio

(PSNR) and structural similarity (SSIM) [3] (SR factor 2).

(e) Pseudo 3-D SRF (f) VSRF (g) Ground Truth (GT)

Figure 2: Sagittal slice of the mouse brain MRI dataset (SR factor 2).
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(2) ROIGT (b) Tricubic (c) NLMU  (d) VANR (e) VA+

Dataset |[Measure |Tricubic|NLMU [4] |Psd. 3-D |Psd. 3-D |VANR VA+ VSRF
SRCNN |SRF

Mouse  PSNR 3494  36.94 36.82 38.63 37.69 38.75 39.46
Brain SSIM 0.9637 0.9721 0.9680 0.9781 0.9/50 0.9/79 0.9804
Kirby 21  PSNR 34.84  36.58 36.10 36.48 35.59 36.06 37.15
Brain [2] SSIM 0.9502 0.9662 0.9643 0.9659 0.9605 0.9650 0.9701

Tested methods: Tricubic upsampling, NLMU [4], Pseudo 3-D SRCNN / SRF (average of three slice-
wise applied 2-D SRCNN [5] / SRF [1]), VANR / VA+ (3-D extension of 2-D ANR [6] / A+ [7])

(9) GT

(f) VSRF
Figure 3: Coronal slice of the human brain Kirby 21 MRI dataset [2] (SR factor 2).

 Visual and quantitative improvement in image quality
» Fast training and inference performance
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Figure 4: Influence of the number of (a) training volumes, (b) features and the ensemble
model.




