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ABSTRACT

Magnetic resonance imaging (MRI) enables 3-D imaging of anatom-

ical structures. However, the acquisition of MR volumes with high

spatial resolution leads to long scan times. To this end, we pro-

pose volumetric super-resolution forests (VSRF) to enhance MRI

resolution retrospectively. Our method learns a locally linear map-

ping between low-resolution and high-resolution volumetric image

patches by employing random forest regression. We customize fea-

tures suitable for volumetric MRI to train the random forest and

propose a median tree ensemble for robust regression. VSRF out-

performs state-of-the-art example-based super-resolution in terms of

image quality and efficiency for model training and inference on dif-

ferent MRI datasets. It is also superior to unsupervised methods with

just a handful or even a single volume to assemble training data.

Index Terms— Super-resolution, random forests, MRI

1. INTRODUCTION

High-resolution magnetic resonance imaging (MRI) allows the visu-

alization of delicate anatomical structures in-vivo, which is crucial to

support early detection of pathologies and to enable an accurate pre-

diction of their size and composition. However, high-resolution MRI

for this task requires long acquisition times, which can lead to stress

and discomfort for the imaged subject. To reduce acquisition times

while retaining high spatial resolution, resolution enhancement can

be applied during data acquisition, e.g. using zero-filling, or retro-

spectively by means of super-resolution (SR) [1].

SR estimates high-resolution (HR) images from single or sets

of low-resolution (LR) images. Multi image SR [2, 3, 4] can ef-

fectively enhance the spatial resolution but multiple acquisitions in-

crease scan times. Single image (SISR) methods are promising al-

ternatives. Reconstruction-based SISR methods [5, 6] are based

on a regularized optimization problem to enforce the downsampled

version of the predicted HR result to be close to the LR image.

Example-based methods estimate a HR image from a single LR im-

age based on pairs of LR/HR examples of an external database. In

this area, dictionary-based approaches [7, 8, 9, 10] build on sparse

representations of image patches. Regression-based approaches are

more effective as they avoid time-consuming sparse coding. These

include tree-based regression [11] on a patch level as well as deep

learning [12, 13, 14] to infer end-to-end mappings. Another class of

SISR, self SR [15, 16], estimates the HR image by internally learn-

ing from patches of different scales without external databases.

(a) LR image (b) VSRF (ours)

Fig. 1: Our volumetric super-resolution forests (VSRF) facilitate

high-resolution MRI while retaining a low scan time as illustrated

by one sagittal slice of the Kirby 21 MRI dataset [17] (SR factor 2).

SISR techniques in 3-D MRI can be either used on slice or vol-

ume level. Slice-wise methods enhance the resolution within one

plane but ignore the coherence between adjacent slices of volumetric

data. Volumetric methods enable simultaneous resolution enhance-

ment in all directions. For instance, Manjón et al. [18] applied an

iterative patch-based non-local reconstruction scheme based on self-

similarity and the 3-D non-local means filter. Jog et al. [19] build

up on anchored neighborhood regression [9] to perform self SR. A

closely related field to MRI SR, image synthesis, uses dictionaries

[20] or random forests [21] to super-resolve MR volumes by utilizing

additional information of a HR volume with another MR contrast of

the same subject. Alexander et al. [22] implemented a random forest

for SR in diffusion MRI with cubic patches and features customized

for diffusion tensor images (DTIs). Yoldemir et al. [23] applied

dictionary learning to diffusion-weighted 3-D images for volumetric

SR. Recently, Tanno et al. [24] integrated an uncertainty modeling

with a 3-D convolutional neural network (CNN) on DTIs. Bahrami

et al. [25] used a CNN with anatomical and appearance features to

non-linearly map 3T to 7T MR volumes. In a further work [26], they

estimated a 7T-like volume with a random forest based on 3T and

7T patches and enhanced the 7T-like volume with dictionary learn-

ing. For brain MRI, Rueda et al. [27] applied dictionary learning

for 3-D SR. More recently, Pham et al. [28] and Chen et al. [29]

proposed deep learning by extending 2-D CNNs for natural images

to 3-D CNNs. CNNs avoid the need for hand-crafted features and

enable end-to-end learning. This leads to state-of-the art results but

requires large amounts of training data that need to match to the de-

sired application to be effective [30]. In contrast, random forests

yield robust results with only a small amount of training data and are
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very fast to train even without sophisticated hardware.

In this paper, we propose volumetric SR forests (VSRF) for

example-based resolution enhancement in MRI. Our method em-

ploys random forest regression and generalizes SR forests (SRF)

[11] that have been originally introduced for natural images to vol-

umetric data. We train the random forest with overlapping 3-D

patches and new customized features. For robust regression, we

propose a median ensemble model to obtain the forest prediction.

Our proposed VSRF can effectively improve the spatial resolution

in MRI, see Fig. 1. It facilitates computationally efficient training

and inference even on a CPU. Moreover, it is effective for example-

based SR even with a limited amount of training data making it an

attractive tool for practical applications.

2. VOLUMETRIC SUPER-RESOLUTION FORESTS

Our proposed VSRF builds on random forest regression [11] to learn

a locally linear mapping between LR and HR patches from example

data. We introduce training, inference and features for this model.

2.1. Random Forest Training

A random forest consists of a set of decision trees which are inde-

pendently trained on a training set of N patch pairs {xn
L,x

n
H}Nn=1,

where xL ∈ R
DL and xH ∈ R

DH are feature vectors representing

the LR and HR patches. The feature vectors xn
L and x

n
H are stacked

into matrices XL ∈ R
DL×N and XH ∈ R

DH×N [11]. The tree

structure is learned by recursively dividing the data space into dis-

joint subsets until the maximum tree depth or minimum number of

feature vector pairs in a node is reached and a leaf node is created.

The splits are performed based on a binary decision made at each

internal node using a pair-wise difference splitting function [11, 31]:

h(xL,θ) =

{

1 xL[ϕ1]− xL[ϕ2] < τ,

0 otherwise
(1)

which compares the difference of two randomly selected feature di-

mensions ϕ1, ϕ2 ∈ {1, . . . , DL} from the LR feature vector xL to

a threshold τ . The parameters θ = {ϕ1, ϕ2, τ} for the splitting

functions are estimated by evaluating a quality measure. We use

node optimization for finding the splitting parameters, i.e. we do not

evaluate the quality measure on all training samples of the node but

we randomly subsample the data of that node [11]. Thus, we re-

duce computation time and increase the variation between the trees.

A common choice for the quality measure for regression forests is

reduction-in-variance based on information gain [26, 31]. We use a

modified quality measure defined by Schulter et al. [11] that operates

in both the low and high-resolution space according to:

Q(XH ,XL,θ) =
∑

i∈{left,right}

Ni ·E(Xi
H ,X

i
L), (2)

where Xi
L and X

i
H contain the Ni LR and HR feature vectors of the

left and right subsets according to θ. The optimization of the qual-

ity measure selects the splits for which the variance of HR feature

vectors and variance of LR feature vectors in the subsets is minimal.

The variance for both domains [11] is given by:

E(Xi
H ,X

i
L) =

1

Ni

Ni
∑

n=1

(‖xn
H − x̄

n
H‖22 + κ · ‖xn

L − x̄
n
L‖

2

2), (3)

where x̄ is the mean over all samples and κ is a hyper-parameter to

control the influence of the LR variance.

In the leaf nodes, we learn locally linear mappings from LR fea-

ture vectors to HR feature vectors using the feature vector pairs that

reach these specific nodes. We determine a mapping Ŵl for the leaf

l according to the least squares problem [11]:

Ŵl = argmin
Wl

Nl
∑

n=1

‖xn
H −Wl · x

n
L‖

2

2. (4)

To yield a more stable solution, we use ridge regression:

Ŵl = argmin
Wl

‖Xl
H −WlX

l
L‖

2

2 + λ‖Wl‖
2

2, (5)

where λ is the regularization parameter. The estimate for the linear

mapping can be solved in closed-form [11]:

Ŵ
⊤
l = (Xl⊤

L X
l
L + λI)−1

X
l⊤
L ·Xl

H . (6)

2.2. Random Forest Inference

In random forest inference the LR feature vectors of the test set are

sent through all trees resulting in one prediction of the mapping func-

tion for each LR feature vector and each tree. The estimated predic-

tions are then combined to a single HR patch by the forest ensemble

model. A common approach for ensembles is to average the pre-

diction of all trees. For SR this means computing an element-wise

average of the predicted HR patches. To account for outliers of the

predicted values of the trees, we employ a median ensemble model

which is more robust with regards to these issues and computes the

median for each component of the predicted HR patches. The pre-

dicted HR information is then added to the tricubically upsampled

LR volume. Since we extracted overlapping patches, we reconstruct

the final volume by averaging the overlapping voxels.

2.3. Features and Patch Extraction

In the proposed VSRF method, LR volumes are processed in two

steps: 1) The LR volume VL is upscaled to the size of the target HR

volume by tricubic interpolation resulting in the volume ṼL. 2) The

missing high-frequency information is predicted by the random for-

est and added to ṼL. In order to perform 3-D SR, we extract over-

lapping nx × ny × nz patches from ṼL. We extract corresponding

HR patches of equal size from the difference volume VH − ṼL that

contains the missing high-frequency information of ṼL compared

to the HR volume VH .

Based on the LR patches, we compute a set of ten different

features to which we refer as DevEdge in the following: Partial

first- and second-order derivatives in all three directions (Dev), edge

orientation in all three directions and edge magnitude. First- and

second-order derivatives are used in the SR framework of [9] for 2-D

images, which we extend to 3-D by adding a third component in z-

direction. Edge magnitude M and edge orientation φ are computed

based on the first-order derivatives Di with i ∈ {x, y, z}:

M =
√

D
2

x +D
2

y +D
2

z , φxy = arctan

(

Dy

Dx

)

, (7)

the edge orientations φzx and φzy are computed accordingly. Since

edge orientation is very sensitive to noise, we convolve ṼL with

a Gaussian filter with standard deviation σ before we compute the

derivatives for edge orientation and magnitude. To accelerate the

training process, a PCA dimensionality reduction is applied to the

feature vectors like in [9]. These feature vectors together with the

vectorized HR patches are then used as input for the random forest.



Table 1: Mean PSNR (dB) and SSIM on the mouse brain dataset (5 volumes) and on the Kirby 21 human brain dataset [17] (30 volumes).

We compared the proposed volumetric SR forest (VSRF) to different state-of-the-art SR methods (SR factor 2).

Dataset Tricubic 2-D SRF [11] Psd. 3-D SRCNN Psd. 3-D SRF NLMU [18] VANR VA+ VSRF (ours)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mouse Brain 34.94 0.9637 37.31 0.9752 36.82 0.9680 38.63 0.9781 36.94 0.9721 37.69 0.9750 38.75 0.9779 39.46 0.9804

Kirby Brain 34.84 0.9502 35.58 0.9611 36.10 0.9643 36.48 0.9659 36.58 0.9662 35.59 0.9605 36.06 0.9650 37.15 0.9701

3. EXPERIMENTS AND RESULTS

We evaluated the performance of VSRF with a mouse and a human

brain MRI dataset. The mouse brain MRI dataset consisted of 21

isotropic high-resolution volumes1. The MR volumes were acquired

with a 4.7T MR scanner (Bruker BioSpec 47/40) with 0.05×0.05×
0.05mm3 resolution, which were measured in-situ after transcar-

dial perfusion with ProHanceTM with a T1-weighted 3-D FLASH

sequence (TE = 4.6ms, TR = 16.3ms, field of view (FOV):

17mm × 15mm × 8mm, matrix: 340 × 300 × 160 voxels, flip

angle = 20 ◦, NEX = 14, total scan time = 3h 2min 37s). We

manually segmented the mouse brain and cropped the volumes to

320×210×140 voxels. The LR volumes were generated by tricubic

downscaling of the HR volumes by an isotropic scaling factor of 2.

For LR volumes the acquisition time would be reduced substantially

by a factor of 5.58 to 32min 42 s at NEX = 10 keeping compa-

rable signal-to-noise ratio (SNR). We used 13 pairs of LR and HR

volumes for training, three to validate our choice of parameters and

five for testing. Second, we applied the SR methods to the publicly

available Kirby 21 dataset [17] with human brain MR data. We used

the 42 T1-weighted MPRAGE volumes with 1.0 × 1.0 × 1.2mm3

resolution, which were acquired with a 3T MR scanner (Achieva,

Philips Healthcare) in the sagittal plane and we cropped them to

240×204×256 voxels. The LR volumes were generated by tricubic

downscaling by a factor of 2. The 42 pairs of HR and LR volumes

were divided into a training set of ten (No. 33-42), a validation set

of two (No. 31-32) and a test set of 30 volume pairs (No. 1-30).

Comparison to State-of-the-Arts. For both datasets, we com-

pared the performance of VSRF with tricubic upsampling, 3-D SR

methods, pseudo 3-D SR methods and the 2-D SRF [11]. SRF was

applied slice-wise to the volumetric MR data using 3 × 3 patches,

T = 30 trees, κ = 1 and λ was estimated automatically (according

to the source code of [11]) based on the condition number of the least

squares problem. The parameter settings for our VSRF are: T = 30
trees, 3 × 3 × 3 patches, κ = 1 and automatic λ and σ = 1 for

the edge orientation features. For 3-D SR, we extended the 2-D an-

chored neighborhood regression (ANR) [9] and adjusted anchored

neighborhood regression (A+) [10] by employing 3-D patches and

utilizing the same features as for VSRF. We refer to these volumetric

methods as VANR and VA+. For VANR and VA+ we used 3×3×3
patches, a dictionary size of 2048 and neighborhoods of 16 atoms for

VANR and 2048 samples for VA+. We directly utilized all training

samples for the computation of VA+ regressors instead of augment-

ing the samples by means of a scaling pyramid and then restricting

the number to 5 million like in [10]. Also we applied the non-local

MRI upsampling (NLMU) [18] as a 3-D SR method. In addition, we

extended the 2-D SRF [11] and 2-D SRCNN [12] to pseudo 3-D SRF

and pseudo 3-D SRCNN. Following prior work [28], the pseudo 3-D

methods were constructed by averaging the three slice-wise SRFs

1All animal experiments were approved by the local ethic committee
(Regierung von Unterfranken, Würzburg, Germany)

or SRCNNs in axial, sagittal and coronal view of the MR volume.

We trained the 2-D SRCNN from scratch with an augmented MRI

dataset over 15 million iterations (1383 epochs for the mouse and

1633 epochs for the Kirby 21 dataset) by feeding the SRCNN with

slices of the axial, sagittal and coronal view of the volume.

The SR results on the mouse and Kirby 21 dataset were eval-

uated using the peak signal-to-noise ratio (PSNR) and the struc-

tural similarity (SSIM) [32], see Table 1. VSRF achieved the

highest PSNR and SSIM of all tested methods on both datasets.

On the mouse dataset VSRF achieved a gain in PSNR (SSIM) of

0.71 dB (0.0025) compared to VA+ and of 0.83 dB (0.0023) com-

pared to pseudo 3-D SRF (next best results). On the Kirby 21 dataset

VSRF outperformed NLMU (second best) with a 0.57 dB (0.0039)
higher PSNR (SSIM). Compared to tricubic upsampling VSRF in-

creased the PSNR (SSIM) by 4.52 dB (0.0167) on the mouse and

by 2.32 dB (0.0199) on the Kirby dataset.

In Fig. 2 regions of interest (ROIs) from the sagittal view of a

mouse brain and in Fig. 3 ROIs from the coronal view of a human

brain from the Kirby 21 dataset are visualized. The SR methods

are successful in learning and recovering high-frequency informa-

tion lost in the tricubically upsampled volumes (Fig. 2b and Fig. 3b).

The cerebellar sub-structure (arbor vitae) of the mouse brain is con-

siderably sharper in the VSRF ROI (Fig. 2i). The other 3-D SR re-

sults (Fig. 2f,g,h) are blurrier than VSRF with less distinct contours,

e.g. VA+ shows some artifacts around the arbor vitae. Some fine

structures of the human cerebellum (Fig. 3g) which are barely visible

using tricubic upsampling (Fig. 3b) regain sharpness to some extent

with the SR methods. VSRF (Fig. 3f) generates a more precise visu-

alization compared to the other 3-D methods (Fig. 3c,d,e) due to arti-

facts of the VA+ and the fuzziness of the VANR and NLMU results.

VSRF seems to better utilize the features to learn the characteristics

of the MRI dataset than VANR and VA+. Further, the choice of the

median ensemble model added additional stability against outliers.

The pseudo 3-D methods (Fig. 2d,e) are also blurrier than VSRF, es-

pecially the SRCNN that over-emphasizes the bright area around the

arbor vitae. We observe an increase in image quality from the 2-D

SRF (Fig. 2c) to the pseudo 3-D SRF to VSRF. We partly attribute

the improvement of VSRF in all three directions compared to SRF

and the pseudo 3-D methods to the use of a cubic neighborhood as

it better exploits the spacial information contained in the volumes,

while the 2-D SRF only captures in-plane relationships. The pseudo

3-D methods average the results of the 2-D methods of the three

views, hence recover more information than the 2-D methods but

are blurrier than the 3-D methods.

Influence of Parameters for VSRF. We evaluated the influence

on the image quality by the number of training volumes for VSRF,

see Fig. 4. We observed a rapid increase in performance for up to

five volumes. More volumes led to minor improvements reaching

the highest PSNR and SSIM values for 13 volumes. Even by using

only one training volume, VSRF outperformed tricubic upsampling

and NLMU, which do not require training data. Hence, VSRF in-

dicated to be relatively robust with a small amount of training data.



(a) ROI Ground Truth (b) Tricubic (c) SRF [11] (d) Pseudo 3-D SRCNN (e) Pseudo 3-D SRF

(f) NLMU [18] (g) VANR (h) VA+ (i) VSRF (ours) (j) Ground Truth (GT)

Fig. 2: Visual comparison of SR results for one sagittal slice of the mouse brain MRI dataset (SR factor 2).

(a) ROI GT (b) Tricubic (c) NLMU [18] (d) VANR (e) VA+ (f) VSRF (ours) (g) Ground Truth

Fig. 3: Visual comparison of SR results for one coronal slice of the Kirby 21 MRI dataset [17] (SR factor 2).
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Fig. 4: Influence of the number of training volumes for VSRF on the

mouse brain dataset (SR factor 2) evaluated with mean PSNR (left)

and SSIM (right). NLMU [18] and tricubic upsampling results are

plotted for comparison.

Fig. 5 showed the clear advantage of the median ensemble for VSRF

compared to the average ensemble regarding PSNR and SSIM, partly

due to patch artifacts caused by the average ensemble. The feature

set DevEdge yielded additional improvement compared to Dev for

the median ensemble.

Computation Time. The VSRF is very fast in training and in-

ference. The inference for the mouse brain MRI dataset required

less than 1min per volume and the training of the 13 volumes took

about 1 h (or about 20min in parallel) with an Intel i7 CPU 3.4 GHz.

VANR and VA+ with about 20 s per volume were even faster in in-

ference but noticeable slower in training due to the dictionary learn-

ing (VANR required 5 h 15min and VA+ 7 h 32min). The exe-

cution time for NLMU took about 90 s per volume. SRCNN re-

quired around 3 days for training on a GPU GeForce GTX 1080 and

Dev DevEdge
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Fig. 5: Influence of the ensemble model (average and median) and

features (Dev and DevEdge) for VSRF on the mouse brain dataset

(SR factor 2) evaluated with mean PSNR (left) and SSIM (right).

pseudo 3-D SRCNN about 10min per volume for inference using

the MATLAB reference implementation of [12].

4. CONCLUSION

We presented a volumetric SR method for brain MRI based on ran-

dom forests that learn mappings of 3-D LR to HR patches. In the

experiments with the mouse brain and the Kirby 21 human brain

MRI datasets, our VSRF approach demonstrated visually and quan-

titatively an improvement in image quality compared to the state-

of-the-art and achieved fast training and inference performance with

a small amount of training data. The proposed approach for MRI

resolution enhancement may be utilized to remarkably reduce MRI

acquisition time with smaller loss of image quality, which makes

adaption into clinical workflows appealing.
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