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• Up to now the concept of precision learning [1] was only used to 

augment networks with prior knowledge

• We want to demonstrate that we can use precision learning to 

formulate different hypothesis on efficient solution schemes 

that are then found as the point of optimality of a deep learning 

traning process

• We show that on the parallel-to-fan beam conversion problem in 

the context of Hybrid MR-/X-ray imaging device and compare with 

an geometrical rebinning method (Fig. 1)

Aim:

• Show that neural networks can be used to find efficient solution 

schemes for unknown operators in a mathematical model

• Find a convolution-based algorithm for the conversion task 

Introduction Results

• An efficient convolution-based algorithm could be found by 

learning the unknown operator in the mathematical model

• The convolution-based algorithm achieve sharper results that the 

interpolation-based pendant

• Learning process has to be better understood for a more

substantiated  regularization

Conclusion
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Finding a convolution-based algorithm:

• parallel-to-fan conversion problem using the discrete 

reconstruction formulas:

• formulate a hypothesis that the inverse bracket can be 

approximated by an projection-independent or –dependent 

filter:

• This formula directly gives us the network topology (Fig. 3) to find 

the unknown operator as in [2] .

Training:

• Additional scaling layer S compensates for the normalization 

between the forward- / back-projector. S gets pre-trained.

• Only numerical phantoms are used (Fig. 2)

• Weights of filter layer K are smoothed with a small Gaussian 

kernel after each epoch to obtain continuous weights

Material and Methods

Figure 3: Proposed network topology based on mathematical model. Only layer K and S are trained.

Figure 1: Geometrical rebinning approach [3]. Figure 2: Numerical training data.

• Projection-indepented filter can be found but is instable (Fig. 4)

• Projection-depented filter can be found (Fig. 5)

• Sharper results than the interpolation-based method (Fig. 6)

Results

Figure 6: Comparison of the geometrical and the proposed convolution-based rebinning method with projection-

dependent and –independent filter. 121 projections are used for the geometrical method to calculate the difference.

Figure 4: Sub-sampling comparison projection-independent filter. The plot colors are red for the reference, blue 
for the respective line profile and green for the difference. The bottom row shows the respective filters.

Figure 5: Sub-sampling comparison projection-dependent filter. The plot colors are red for the reference, blue for the 
respective line profile and green for the difference. The bottom row shows the respective filters.


