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Introduction Results
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* Up to now the concept of precision learning [1] was only used to
augment networks with prior knowledge

 We want to demonstrate that we can use precision learning to
formulate different hypothesis on efficient solution schemes
that are then found as the point of optimality of a deep learning
traning process

* We show that on the parallel-to-fan beam conversion problem In
the context of Hybrid MR-/X-ray imaging device and compare with
an geometrical rebinning method (Fig. 1)
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schemes for unknown operators in a mathematical model WS

* Find a convolution-based algorithm for the conversion task
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Material and Methods

i i i - i - Figure 4: Sub-sampling comparison projection-independent filter. The plot colors are red for the reference, blue
FI nd I ng a CO”VOIUUO” based algorlth m. for the respective line profile and green for the difference. The bottom row shows the respective filters.
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reconstruction formulas:

AfA, (4,4,) p,=p,

 formulate a hypothesis that the inverse bracket can be
approximated by an projection-independent or —dependent
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* This formula directly gives us the network topology (Fig. 3) to find
the unknown operator as in [2] .

Training:

» Additional scaling layer S compensates for the normalization
between the forward- / back-projector. S gets pre-trained.

* Only numerical phantoms are used (Fig. 2)
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Figure 5: Sub-sampling comparison projection-dependent filter. The plot colors are red for the reference, blue for the

¢ We|ghts Of fllter Iayer K ale SmOOthed W|th d Sma” GaUSSian respective line profile and green for the difference. The bottom row shows the respective filters.
kernel after each epoch to obtain continuous weights

121 - Projections Syben et al. Projection-dependent Filter Projection-independent Filter

Results

* Projection-indepented filter can be found but Is instable (Fig. 4)
* Projection-depented filter can be found (Fig. 5)
» Sharper results than the interpolation-based method (Fig. 6)
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Figure 6: Comparison of the geometrical and the proposed convolution-based rebinning method with projection-
dependent and —independent filter. 121 projections are used for the geometrical method to calculate the difference.

Conclusion

* An efficient convolution-based algorithm could be found by
learning the unknown operator in the mathematical model

* The convolution-based algorithm achieve sharper results that the
Interpolation-based pendant
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Figure 1. Geometrical rebinning approach [3]. | Figure 2: Numerical training data.
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