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Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract. In this paper, we derive a neural network architecture based
on an analytical formulation of the parallel-to-fan beam conversion prob-
lem following the concept of precision learning. The network allows to
learn the unknown operators in this conversion in a data-driven man-
ner avoiding interpolation and potential loss of resolution. Integration
of known operators results in a small number of trainable parameters
that can be estimated from synthetic data only. The concept is evalu-
ated in the context of Hybrid MRI/X-ray imaging where transformation
of the parallel-beam MRI projections to fan-beam X-ray projections is
required. The proposed method is compared to a traditional rebinning
method. The results demonstrate that the proposed method is superior
to ray-by-ray interpolation and is able to deliver sharper images using
the same amount of parallel-beam input projections which is crucial for
interventional applications. We believe that this approach forms a basis
for further work uniting deep learning, signal processing, physics, and
traditional pattern recognition.
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1 Introduction

Deep learning is a game-changer in many perceptual tasks ranging from image
classification over segmentation to localization [2]. A major disadvantage of per-
ceptual problems is that no prior knowledge on how the classes and labels are
obtained is available. As such a large body of literature exists that investigates
different network topologies for different applications. As result, we managed to
replace hand-crafted features with hand-crafted networks.

Recently, these techniques also emerge to other fields in signal processing.
One of them is medical image reconstruction in which surprising results have
been obtained [16, 4]. For signal processing, however, we do have prior knowl-
edge available that can be reused in the network design. The use of these prior
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operators reduces the number of unknowns of the network, therewith the amount
of required training samples, and the maximal training error bounds [6]. Up to
now, this precision learning approach was only used to augment networks with
prior knowledge and or to add more flexibility into existing algorithms [14, 15, 10,
3]. In this paper, we want to extend this approach even further: we demonstrate
that we can derive a mathematical model to tackle a problem under considera-
tion and use deep learning to formulate different hypothesis on efficient solution
schemes that are then found as the point of optimality of a deep learning training
process.

In particular, we aim in this paper at an efficient convolution-based solution
for parallel-to-fan-beam conversion. Up to now, such an efficient algorithm was
unknown and the state-of-the-art to address this problem is rebinning of rays
that is inherently connected to interpolation and a loss of resolution.

The problem at hand is not only interesting in terms of algorithmic devel-
opment, it also has an immediate application. Novel hybrid medical scanners
will be able to combine Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI) in a single device for interventional applications [8, 13]. While
CT offers high spatial and temporal resolution, MRI allows for the visualization
of soft-tissue contrast, vessels without the use of contrast agent, and there is no
need for harmful ionizing radiation.

However, acquisition on MR devices is slow compared to CT. Flat-panel
detectors allow image-guided interventions using fluoroscopic projection images
that can be acquired at high frame-rates with up to 30 frames per second. This
is a challenging time constraint for MRI. Recent developments indicate that
MRI is also able to perform projection imaging at acceptable frame rates [5].
Yet the two modalities are inherently incompatible, as MRI typically operates
in a parallel projection geometry and X-rays emerge from a source point that
restricts them to fan- and cone-beam geometries.

Recent publications elaborate on the idea of MR/X-ray projection fusion
and extend the MR acquisition such that the final MR-projection image shows
the same perspective distortion as the X-ray projection [12, 11, 5]. Current ap-
proaches, however, rely on rebinning that requires interpolation which inherently
reduces the resolution of the generated images. In this paper, we propose to de-
rive an image rebinning method from the classical theory. However, as this would
require an expensive inverse of a large matrix, we propose to replace the opera-
tion with a highly efficient convolution that is inspired by the classical filtered
back-projection solution in CT. Here, we examine two cases for this convolution:
a projection-independent and a projection-dependent one.

2 Methods

In the first section we shortly describe the link between X-ray and MRI projec-
tions using rebinning [11], afterwards we revisit the discrete form of the recon-
struction problem, which is then followed by our proposed problem description.
Subsequently the network topology will be derived following the precision learn-
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ing paradigm. This section is concluded by a description of the training process
and the used training data.

2.1 Linking MRI and X-ray Acqusition

The link between the X-ray and MRI acquisition is given by the central slice
theorem. This has first been demonstrated by Syben et al. [11] for simulation
data and was later applied for the construction of X-ray projections from MRI
measurement data [5]. Their approach is inspired by the geometric rebinning
method which allows the reconstruction of fan-beam data by resampling the
fan-beam acquisition to a parallel-beam acquisition.

They follow the central slice theorem which states that the Fourier transform
of a 1D projection of a 2D object can be found in the 2D Fourier transform of
the object along a radial line with the same orientation as the detector. Because
the MRI can sample the Fourier transform of the object, parallel projections can
be acquired. This relationship combined with the geometric rebinning method
can be used to convert a set of parallel projections to one fan-beam projection
as shown in Fig 1.

In their publication they analyze the sub-sampling capability of this method.
In this context, full sampling means that the MR device acquires one parallel
projection for each fan-beam detector pixel. Thus sub-sampling is related to the
case where less parallel projections are acquired with respect to the number of
fan-beam detector pixels. They show that only few projections are necessary to
create the target fan-beam projection with a small error [11]. Following their
geometric rebinning method two steps of interpolation in spatial domain are
required: first an interpolation between two projections with different projec-
tion angles is carried out followed by an interpolation between the pixels of the
parallel-beam projection.

2.2 The Tomographic Reconstruction Problem

The CT imaging procedure from acquiring X-ray projections to the reconstructed
object information can be described in discrete linear algebra. The acquisition
of the projection images of the object can be described with

Ax = p , (1)

where A is the system matrix describing the geometry of the imaging system. x
is the object itself and p are the projections of x under the described geometry
A. Correspondingly the reconstruction can be obtained with

x = A−1p , (2)

where A−1 is the inverse of the system matrix, which can not be inverted since it
is a tall matrix. Thus, the reconstruction is conducted using the left-side pseudo
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Fig. 1: MRI to X-ray link and geometric rebinning method proposed by Syben
et al. [11].

inverse which gives the approximation with minimal distance to the inverse in a
`2-norm sense.

x = A>(AA>)−1p (3)

where A> is the transposed system matrix, which can be algorithmically de-
scribed as the back-projection operator. For a full scan with 180◦ of rotation in
parallel geometry, the inverse bracket is a filtering step in the Fourier domain
and can be described as

x = A>FHKFp (4)

where F ,FH is the Fourier and inverse Fourier transform, respectively. K is
the so called Ramp filter represented in a diagonal matrix. Together the pseudo
inverse this describes the filtered back-projection algorithm in a discrete fashion.

2.3 Rebinning using Tomographic Reconstruction

As shown in [10], the discrete description of the reconstruction problem can be
used to derive a network topology and to learn the reconstruction filter. In the
following, we use this idea to derive an optimization problem to find a filter which
can be used to transform several parallel projections to one fan-beam projection.
A fan-beam projection can be created by

Afx = pf , (5)
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where Af describes the system matrix for a fan-beam projection and pf is
the respective projection. The necessary parallel projections which contain the
information for the fan-beam projection can be found in the Fourier domain (or
K-space of the MRI system) in a wedge region [11] which is defined by the fan
angle of the fan-beam geometry. These parallel projections can be described with

Apx = pp , (6)

where Ap is the system matrix generating the projections pp from object x under
the parallel-beam geometry. The object x in Eq. 5 can be substituted by the
reconstruction using the inverse of the system matrix and the projections from
Eq. 3 in Section 2.2:

Af A>p (ApA
>
p )−1pp︸ ︷︷ ︸

Parallel reconstruction x

= pf . (7)

In principle, the above equation is hard to solve, as the reconstruction task from
this very small set of projections is ill-posed and there is no analytical closed-from
solution known. However, we now simply postulate that there exists a projection-
independent filter which is a close approximation the above inverse bracket. As
in Section 2.2, this allows us to express the solution as a multiplication with an
diagonal filter matrix K in Fourier domain:

AfA
>
p F

HKFpp = p̂f , (8)

where p̂f is the approximated fan-beam projection under the above stated as-
sumption. Now the only unknown operation in above equation is K that can be
determined using an objective function:

f(K) =
1

2
‖AfA

>
p F

HKFpp − pf‖22 . (9)

The gradient of function f is with respect to K is

∂f(K)

∂K
= FApA

>
f (AfA

>
p F

HKFpp − pf )(Fpp)> . (10)

Note that this gradient is determined automatically by back-propagation to up-
date the weights of layer K, if Eq.8 is implemented by means of a neural network
as already observed for a different application in [10]. Thus, the network topology
for a network which learns the transformation from several parallel projections
to one fan-beam projection could be derived by the presented approach.

2.4 Network

The network topology can be directly derived from the description of the ob-
jective function in Eq. 9 and is shown in Fig. 2. Projectors and back-projectors
are scaled to each other in terms of sampling density and number of projections.
Since we mix a parallel back-projector with a fan-beam forward projector and
aim at different sampling densities we added an additional scaling layer S to the
network to compensate accordingly.
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Fig. 2: Network based on objective function (Eq. 9).

Implementation Details

We have implemented the network using Tensorflow [1]. Thus, the Fourier and
inverse Fourier transform are layers provided by the Tensorflow framework. The
parallel projector and back-projector as well as the fan-beam projector and back-
projector are unmatched pairs and are implemented as custom ops in Tensorflow
using Cuda kernels. For the back-propagation the respective operation is assigned
to the layers for the gradient calculation.

2.5 Training Process

Training Data

For the training we use numerical phantoms which bring their different charac-
teristics into the training process (Fig.3). The first type of phantoms are homo-
geneous objects that fill the field of view like ellipses and circles. The second type
contain a homogeneous field of view filling ellipse with contains varying number
of elongated ellipses (in the following called bars). The third type of phantoms
uses only bars without the surrounding ellipsoid. As a last type we use phantoms
which contain normal distributed noise.
In the following list, the number test phantoms are listed:

– 1 Ellipse phantom
– 1 Circle phantom
– 8 Ellipse-bar phantoms (with increasing number of bars from 1 up to 8)
– 5 Bar phantoms (with increasing number of bars from 1 to 5
– 50 Noise phantoms (Normal distributed noise)

The parallel projections and respective label projections (fan-beam) are based
on the following geometry:

– Trajectory: [0◦, 25◦, 45◦, 65◦, 90◦]
– Source detector distance (SDD): 1200 mm
– Source isocenter distance (SID): 900 mm
– Parallel and fan-beam detector size: 512 pixel
– Reconstruction size: 256× 256
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(a) Circle (b) Ellipse (c) Ellipse-bar (d) Bar (e) Noise

Fig. 3: Phantom types in training set.

Thus, the training data set consists of partial parallel projections according to
the method described in [10] using the given angles in the trajectory for β. The
respective label fan-beam projection is generated for each angle of the trajectory
for each phantom. All projections are generated using the implemented projec-
tion layers. The performance of the network is validated using the Shepp-Logan
phantom [9].

Training Setup

The training process is divided into two steps. In the first step, the scaling layer
S is trained while K remains fixed. After the training of the scaling layer S
converges, the scaling factor is fixed and the training of the filter K is started.
This separation is based on two thoughts. First, the scaling layer fixes an oc-
curring problem due to the mix up of the different forward- and backprojection
geometries and is not part of the unknown operator. The second point is that
by dividing the learning process into two parts the learning rate for the scaling
layer can be much higher and therefore speed up the whole training process.
Furthermore the separation ensures that the calculated loss w.r.t. the label pro-
jection can express the deviation from the real fan-beam projection and is not
distracted by a scaling factor due to the mixed forward- and backprojection. The
filter K is initialized with the Ram-Lak filter [7], which is an optimal discrete
reconstruction filter for a complete data acquisition and therefore can be inter-
pret as a strong pre-training of the network. We train on different sub-sampling
factors, starting with full sampling and continuing by successively sub-sampling
to 15, 7, 5 and 3 projections. This allows us to compare with the geometrical
rebinning approach [11].

Projection-dependent Vs. Projection-independent

To determine which type of filter performs the best, we performed all experiments
on the different sub-sampling levels using both a projection-dependent and a
projection-independent of version of K.

Regularization

To achieve smooth filter weights we use a Gaussian smoothing after each training
epoch.
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3 Results

The performance of the network is evaluated in three steps. First we analyze
the performance for the different sub-sampling stages using the Shepp-Logan
phantom and the fan-beam forward projection of the phantom as ground truth
(GT). Afterwards, the results are compared with the geometrical approach with
certain sub-sampling factors. To provide a better qualitative impression of the
performance we subsequently present a comparison based on a 3D phantom using
a stacked fan-beam approach. The network performance analysis is followed by
a presentation of the learned filter types.

Network Performance

In Fig. 4 the rebinning performance of the learned network for the projection-
dependent filter using the Shepp-Logan phantom with different sub-sampling
factors is shown. All results show a similar shape as the line profile of the GT
projection. The full sampling as well as the sub-sampling case using 15 pro-
jections show a noisy behavior. The noise is less for the sub-sampling cases
using 7, 5 and 3 projections, respectively. For all versions, except for the case
with 7 projections, the rebinned signal overshoots the GT signal at the edges
of the object. For the projection-independent version of the filter (Fig. 5) simi-

Fig. 4: Sub-sampling comparison of the projection-dependent filter with the GT
projection of the Shepp-Logan phantom. The plot colors are red for the reference,
blue for the respective line profile and green for the difference.

lar but strengthened behavior can be observed. For all four rebinning types the
projection-independent counterpart is more noisy and overshoots or undershoots
more extensively, especially for the rebinning with 5 projections.

However, the noisiness of the 1D plots is misleading as the visual impression of
the rebinned MR-projections from the head phantom show in Fig. 6. Even though
the noisy behavior of the previous evaluation can be observed in the line profiles
of the different sub-sampling methods, the noise level is not the main factor of
the observed image impression. The experiment with 15 projections gives a sharp
visual impression of the object, although it suffers from the strongest noise. The
line profiles of the network trained with 5 and 3 projections show a reduced noise
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Fig. 5: Sub-sampling comparison of the projection-independent filter applied on
the Shepp-Logan phantom. The plot colors are red for the reference, blue for the
respective line profile and green for the difference.

level compared to the network using 15 projections, but high-frequency artifacts
and blurriness towards the edges of the image can be observed in the image.

Fig. 6: Sub-sampling comparison of the projection-dependent filter applied on
the MR head phantom. The plot colors are red for the reference, blue for the
respective line profile and green for the difference.

For the projection-independent filter results, a similar but strengthened be-
havior can be observed in Fig. 7. The filter for 15 projections provides a similar
visual impression as the projection-dependent counterpart. The strength of the
noise is stronger for the filter with 7, 5, and 3 projections than their respec-
tive projection-dependent counterpart. The high frequency artifacts are much
stronger for the case with 5 and 3 projections.

In Fig. 8 both filter types, projection-independent and projection-dependent
are compared to the performance of the geometrical rebinning [11]. For the
experiment 15 out of the acquired 121 projections of the head phantom are
used. Both filters provide a sharper image impression compared to the reference
method. In comparison with the geometrical rebinning method the results of
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Fig. 7: Sub-sampling comparison projection-independent filter, real data. The
plot colors are red for the reference, blue for the respective line profile and green
for the difference.

both filters show high frequency artifacts at the edges of the phantom, which
can be also seen in the line profiles.

Filter Appearance

In Fig. 9 the different learned projection-independent filters are shown. The
filter using 512 projections is very smooth, while the filters with 15, 7, and 5
projections show high frequency components with a large amplitude. The filter
for 3 projections has a high frequency component too, but with a much smaller
amplitude. Furthermore, the amplitude of the filter is decreased compared to the
initialization and the other filters. The learned projection-dependent filters are
shown in Fig. 10. The filter for 512 projections shows in the middle a shape like
the projection-independent counterpart, but drops off at the edges. While this
is also true for the filter for 15 projections, the filter for 7, 5 and 3 projections
are converging towards a U-shape.

4 Discussion

The results of the 1D fan-beam projections prove that our proposed analytical
description of the rebinning process can be carried out learning the unknown
operators in the problem description. The results of the MR head phantom pro-
vide a sharper visual impression than the rebinning method proposed Syben et
al., although the noise level in the line profiles is much higher. The blurry vi-
sual impression of their approach is linked to the necessary interpolation in their
method. Especially for image-guided interventions the sharpness is important to
provide a clear impression of the vessels and interventional devices. Although
the line profile for geometric rebinning overlaps very well with the projection



Deriving Neural Network Architectures using Precision Learning 11

Fig. 8: Comparison of the geometrical rebinning methods and filter type using 15
projections out of the acquired 121 MR. The reference image with 121 projections
is created by the geometrical rebinning method. The plot colors are red for the
reference, blue for the respective line profile and green for the difference.
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Fig. 9: Learned projection-independent filter in frequency domain for different
sub-sampling factors.

Fig. 10: Learned projection-dependent filter in frequency domain for different
sub-sampling factors.

reference, it must be taken into account that the reference case was already
rebinned with this method itself based on all existing MR projections and is,
therefore, already smoothed. Overall, using the learned filter based on 15 pro-
jections provides the best visual impression, while the amount of necessary MR
projections is small. These observation are confirmed by the analysis published
in [11]. In general, additional reduction of the number of projections is desirable,
which could be achieved by further improving the filter learning process, e.g. by
linking it directly to the k-space acquisition scheme.
The results of the 1D projections as well as the stacked fan-beam experiment
encourage a detailed discussion of the filter, its shape and the applied regular-
ization. The smoothing after each epoch leads to smooth filter weights for the
projection-dependent case and also for the projection-independent filter for the
full sampling. However, the smoothing does not enforce a smooth filter func-
tion for the projection-independent sub-sampling filters. Especially the 7 and
5 projection case show strong changes in amplitude. In the course of the ex-
periments, we investigated different regularization terms, like the `2-norm on
the filter weights or the `1-norm of the first derivative of the filter. However,
regularization with the aformentioned methods performed not as well as ex-
pected. Despite thorough analysis of other regularization terms and correspond-
ing weighting factors, the Gaussian smoothing lead to a more stable learning
process and better results. However, a more profound method to achieve smooth
filter weights is desirable. For this we started to look closer into regularizing the
filter using the Lipschitz continuity. Certainly a more consistent regularization
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especially for the projection-independent filter has to be found. Such a regular-
ization could open the opportunity to reduce the number of used projections
in the rebinning process while preserving the sharp visual impression. Further-
more, introducing a symmetry constraint for the filter could improve the learning
behavior and the outcome filter shape, while at the same time the number of
parameters which have to be learned are reduced by a factor of 2.
The results lead to several interesting questions which should be considered in
further research. The impact of the number of used projections on the rebinning
process as well as the covered frequency spectrum of the used phantoms on the
filter shape are a promising line for subsequent work. The observed artifacts
and the high frequency component in the projection-independent filter could be
caused by insufficient coverage of the frequency space in the training process.
Also the selection of the projections means a certain coverage of the wedge in
the Fourier space as proposed by Syben et al. Furthermore the shape of the
projection-dependent filter compared the 512 projection with the 3 projection
filter version invites for further experiments. The U-like shape of the projection-
dependent filter in the 5 and 3 projection cases removes large amounts of low
frequencies. With regard to MR acquisition, this could lead to a higher acqui-
sition speed, as fewer frequencies have to be acquired in the K-space. Similar
thoughts can be made with respect to the projection-independent filter with 7
projections. While it is more likely that the high change in amplitude is linked
to the above discussion of the frequency spectrum and selected projections the
question arises if a introduction of sparsity could lead to a sparse selection of
frequencies.

Note that this is not the only approach for fan-beam MR imaging. Wachowicz
et al. [12] propose a method using additional non-linear gradient coils to directly
acquire distorted images. Their approach is based on additional hardware, while
we are demonstrate an acquisition approach which can be achieved without
additional hardware.

An overall interesting observation is the performance of the derived network
topology. The results show that we can substitute the inverse bracket of right
inverse of the system matrix by a filter in the frequency domain. The network
topology to learn such a filter could be derived used the precision learning ap-
proach introduced in [6].

5 Conclusion

We presented an alternative description of the rebinning process in terms of a
projection-dependent or -independent filter. Based on the reconstruction prob-
lem and the problem description, we derived a network topology which allows to
learn the unknown operators. Our proposed method provides a sharper image
impression than the state-of-the-art method, since the necessary interpolation
and thus smoothing steps can be avoided. Furthermore, the filter design is done
entirely data-driven. The presented results encourage further investigation of the
method. With deeper insight in the learning process, we assume that a further
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reduction of the necessary number of projections without losing the sharp image
impression is possible. Additionally, as a next step the filter learning process
may be extended to cone-beam projections. We hope that a better understand-
ing of the filter will enable us to further reduce the number of data points to be
recorded in k-space and, in the best case, to reduce them to points analytically
determined by the filter. In the future, we want to combine our approach with
MR acquisition trajectories specially adapted to our case.

Overall the results encourage to apply the proposed concept of learning un-
known operators in domains where prior knowledge is available.
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