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Abstract
Purpose In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by
involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research
challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in
intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible
in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use
cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have
the potential to create more general registration platforms. However, training image to image methods would require large
multimodal datasets and ground truth for each target application.
Methods This paper proposes a model-to-image registration approach instead, because it is common in image-guided inter-
ventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based
method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images.
Results Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was
2.92 ± 2.22 mm on 1000 test cases, superior to that of manual (6.48 ± 5.6 mm) and gradient-based (6.79 ± 4.75 mm)
registration. High robustness is shown in 19 clinical CRT cases.
Conclusion Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and
high robustness indicating that it could be applied in image-guided interventions.
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Introduction

Minimally invasive cardiac interventions, such as cardiac
resynchronization therapy (CRT), are performed under X-
ray fluoroscopy guidance. X-ray imaging is ideal to visualize
dense structures; soft tissue contrast is, however, highly lim-
ited. In such interventions, preoperative data can be fused
with intraoperative images to support interventional naviga-
tion. To provide clinically useful fused images, a reliable
registration is required. Registering two datasets acquired
with fundamentally different imaging modalities (i.e., MR
and X-ray) is highly challenging: Intensities, contrast levels
and fields of view (FOVs) can be significantly different, and
the same structures may not be visible in both modalities.

In CRT, as in most cardiac procedures, these differences
can be drastic: The preoperative data are a non-contrast-
enhanced MR acquisition, and the intraoperative data are
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X-ray fluoroscopy. The preoperative MR acquisition is often
a short axis stack of cine images, showing soft tissue with
high in-plane (1–2mm), but low out-of-plane resolution
(10mm). The images are highly cropped, the FOV is con-
centrated on the ventricles, showing only a few surrounding
structures. Structures that may be useful for registration such
as the spine or the ribs are not visible. On the contrary, fluo-
roscopy shows dense structure, such as bones or instruments,
has high resolution, and can have a much larger FOV.

In the challenging research area of 3D/2D registration,
a number of approaches have been proposed [10]. Clinical
experts usually register preoperative models or 3D images to
2Dfluoroscopymanually [13]. Experts can combine anatom-
ical knowledge with extensive experience of interpreting
X-ray images and projective geometry, this is, however,
time-consuming, has a learning curve, and is highly user-
dependent. Manual registration can be simplified by using
fiducial markers [4,13]. Fiducials can also be used in opti-
cal tracking-based registration [14,15], but these approaches
require the preoperative scan to be acquired directly before
the intervention and changes to the clinical workflow need to
be introduced, which are often not feasible. Manual registra-
tion can be supported by tools inserted into veins or cardiac
chambers [2]; however, these can distort the anatomy, thus
reducing registration accuracy and robustness. Automatic
approaches were also developed exploiting endovascular
tools [3]. These approaches require a high-resolution preop-
erativeMR scan, to extract endovascular models, that is often
not available. Approaches extracting models from SPECT
images exist for CRT planning [19]. The models of the left
ventricle (LV) are registered to the coronary veins, recon-
structed from contrasted X-ray fluoroscopy, by identifying
grooves on the surface of the LV. Due to the nature of SPECT
imaging (low resolution), this can only be done withmultiple
assumptions and limited accuracy.

A notable approach specifically designed for CRT relies
on adjacent anatomical structures [16,17]. Similarly to the
SPECT-based approaches, the coronary venous anatomy
from fluoroscopy is registered to preoperative models of the
LV from MR imaging. The method is, however, limitedly
applicable, if the contrasted X-ray acquisitions do not have
sufficient quality, due to the anatomy, or the contrast injec-
tion. The model-based property enables the usage of this
method with any preoperative modality, if the required LV
model can be extracted.

Learning-based approaches that can be used for guiding
procedures were also developed in recent years. A notable
approach registers a CAD model of an implant to X-ray
images by a convolutional neural network (CNN) regression
model [12]. The approach, however, is difficult to general-
ize to anatomical data; it is only applicable to highly stiff
objects of certain shapes, i.e., the implants. The rendering

of the implant model is performed similarly to a previous
approach [7].

Classical approaches often have low robustness and cap-
ture range. Uniform data and a good initial alignment are
required. More novel machine learning-based approaches
can overcome these challenges. An artificial intelligence-
based (AI based) approach was shown to perform rigid
2D/2D and 3D/3D registration robustly on medical data [9].
In this approach, an artificial agent, modeled by an artificial
neural network (ANN), is trained to learn a policy, an optimal
strategy to take actions depending on the input images.Due to
the high robustness of the approach, it is ideal to be applied
in interventional guidance, where robustness may be more
valuable than accuracy. The approach was extended to solve
3D/2D registration of the spine in CT and fluoroscopy [11].
However, in this approach, the agent takes DRR as input.
DRRs can only be rendered for CT. The approach is not
directly applicable to registration problems where the 3D
modality is MR.

There are two significant challenges in AI-based cross-
modality registration: (1) They require large sets of training
data with ground truth (GT) registration and (2) they only
work on the specific modalities and acquisition protocols
they were trained on. The former is a significant problem for
CRT. Interventional fluoroscopy is not, in general, automat-
ically stored, patients may be imaged in modality-specific
positions (e.g., arms up / arms down) causing a non-rigid
transformation, and manually generating GT registration is
time-consuming and inaccurate. The latter makes the regis-
tration systemsvulnerable to changes in acquisition protocols
and prevents general adoption of the same system for multi-
ple clinical procedures.

In the pursuit of a general and robust cross-modality
registration framework, this paper exploits a byproduct of
the preoperative diagnostic process—anatomical models. In
order to diagnose or characterize diseases, it is common to
segment the anatomy of interest (i.e., LV for CRT). The main
advantage of using preoperative models is that the regis-
tration framework can be generalized, as it is independent
of preoperative voxel intensities and acquisition parameters.
The method can be trained on a single modality and applied
to other modalities representing the same anatomy without
retraining for specific cross-modality images.

In this paper, a novel solution for multimodality regis-
tration for cardiac procedures is presented that has minimal
interference with standard clinical routine. The approach is
a combination of 3D model extraction from preoperative
data and an artificial intelligence-based registration frame-
work [11]. The system is capable of registering preoperative
models, without relying on voxel intensities or features from
the preoperative modality, to a single 2D X-ray image. This
means that the preoperative data can be of anymodality (e.g.,
MR, CT or ultrasound), if relevant models can be extracted.
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The approach requires a single X-ray acquisition; thus, the
clinical workflow does not need to be amended to acquire
a second image. As a further advantage, since preoperative
models are often created during preoperative planning and
diagnostic reporting, the model extraction is not an addi-
tional complication. Thus, the method can provide a robust
registration for interventional guidance, without major inter-
ference with the standard clinical workflow.

Materials andmethods

Overview

The idea is to register models extracted from preoperative
data, i.e., MR to intraoperative X-ray fluoroscopy, to guide
cardiac interventions. An overview with a trained agent is
illustrated in Fig. 1. The 3D preoperative data are segmented
prior to the intervention, to extract a model of the anatomy of
interest, i.e., the LV. During the intervention, an X-ray image
(the fixed image) is acquired. A 2D projection image of the
LV model is generated (the moving image) with the same
imaging geometry as the X-ray image. The two images are
shown to an agent, modeled by an ANN, that predicts the
reward (the better the direction of an action, the higher the
reward) for each possible action. The action with the maxi-
mum reward is chosen and is applied to the 3D model. The
moving image is regenerated from the transformed model.
These steps are iteratively repeated until convergence.

In the current setup, the registration is performed between
a 3D model and a single fluoroscopy frame, not accounting
for cardiac and respiratorymotion in consecutive frames. The
depth is assumed to be approximately correct after isocenter-
ing the volumeand theX-ray image.The registration problem
is restricted to the 3 degrees of freedom (DOF) in the imag-
ing plane: x (horizontal) and y (vertical) translation and a
rotation (around the axis of projection z).

Imitation learning

The registration task can be formulated as a type of rein-
forcement learning problem [9], imitation learning. The
agent’s steps can be modeled as a Markov decision process:
{S, A, τ, r , γ }, where S represents the possible states, A the
possible actions, τ is the probability of an action taken from
a state at a certain time step, r is the reward for an action,
and γ is the discount factor, defining the importance of long-
term rewards. The agent is in a single state (alignment) st at
a certain time step t and actions (steps) at in every direction
along each DOF are rewarded, depending on the effective-
ness (better or worse alignment) of action at . The goal is to
learn a policy π , an optimal registration strategy, that can
predict the optimal action with the highest reward from the
current state St :

at = π(St ), (1)

thus to maximize the long-term reward:
∞∑

t=0

γ t rat , (2)

where rat is the reward for action at . The agent can be mod-
eled by an artificial neural network (ANN) and by training,
a policy is learned by the network. The policy will imitate
what the agent was being shown during training.

The agent is trained in a supervised manner: It is shown
two images in the current state and the optimal rewards. The
rewards are defined in a way that an action receives a higher
reward, if it brings the moving image closer to the optimal
alignment. The improvement, thus the reward rt+1, is defined
as the difference of distances between the old transformation
Tt and GT transformation Tg , and the current transformation
Tt+1 and the GT transformation:

rt+1 = D(Tg, Tt ) − D(Tg, Tt+1). (3)

The distance between two transformations T1 and T2 is
D(T1, T2), the L2 norm of the parameters of the transfor-
mations, as described in [9].

Architecture

The agent is modeled by a pair of CNNs to encode the input
images into features and another neural network (NN) that
decodes the features to determine the rewards, see Fig. 2.
The input layer of each CNN is defined to be 128× 128, and
the input images are resampled to match this resolution. The
CNNs consist of 4 convolutional layers, each followed by
rectified linear units (ReLU) and a max-pooling layer. Batch
normalization was applied after each layer. The CNNs result
in feature vectors that represent the data. The feature vectors
are concatenated and a NN with 4 fully connected layers,
followed by ReLU layers and batch normalization, decodes
the feature vectors to predict the rewards.

Model-to-image registration

To train an agent for registration, perfectly aligned 3Dmodels
and 2D images are required. It is highly challenging to have a
GT registration forMR orUS toX-ray data and, additionally,
the number of availablemultimodal datasets is highly limited.
Due to these reasons, only CT images are used for training:
The 3D models are extracted by segmentation, and the 2D
images are generated by projections.

The CT datasets were automatically segmented by a com-
bination of object localization and a multistep non-rigid
deformation estimation [18]. The segmentation results in a
binary mask and a mesh model of the LV, see Fig. 3.
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Fig. 1 Overview of the model-to-image registration method with an artificial agent

Fig. 2 Architecture of the neural network that represents the artificial agent

3D/2D registration model

The problem of different dimensionalities was solved as
in [11]; 2D images were shown to the agent. The fixed
and moving images for every training sample are generated
from the same CT dataset. The fixed image is a digitally
reconstructed radiograph (DRR) [8] representing the intra-
operative X-ray image. The DRRs are projection images of
the CT volume, based on the X-ray attenuation model. The
center of projection is defined to be the center point of the
LV model. The fixed image was generated with a large FOV,
i.e., 300 mm× 300 mm. The moving image, the projection
of the LV model, was generated with a smaller FOV, i.e.,
120 mm × 120 mm, having the LV centered. The model
projection image will correspond to a subregion of the fixed
image, the region of interest (ROI). Translation is performed
by moving the LV model in 3D and regenerating the moving

image, while keeping the LV model in the center of the FOV.
This way, for consecutive translations, the projection image
will correspond to different subregions of the fixed image.
The ANN, modeling the agent, is shown an image pair, the
moving image and the corresponding ROI extracted from the
fixed image.

Training setup

The LIDC-IDRI public dataset [1] and previously acquired
data were used (802 contrasted volumes). The data were split
to 702 training and 100 test datasets. To generate a suffi-
cient number of training pairs, the 702 training datasets were
augmented. This was mainly performed by perturbing the
perfectly aligned, generated image pairs. Transformations
with the 3 DOF (2 translations and 1 rotation), defined by
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Fig. 3 Model extraction from CT images

the imaging plane of the fixed image, were applied to the 3D
mask.

The maximal perturbation of the translation components
of the GT transformation was 35mm, and the maximal
rotation componentwas 15◦. These values correspond tomis-
alignment observed after the isocenters of anMRvolume and
a fluoroscopy image are co-registered. Furthermore, a ran-
dom, maximally 10mm offset to the center of projection was
introduced, since the heart is not perfectly centered in flu-
oroscopy acquisitions. Additionally, the primary positioner
angulation (left/right anterior oblique) was varied between
− 15◦ and + 15◦, and the secondary angle (caudal/cranial)
between − 5◦ and + 5◦. By generating 1000 perturbations
for each of the 702 training datasets, 702,000 perturbations
were created.

The network described in the “Architecture” section was
trained with a minibatch size of 80. The solver used was
RMSProp with amomentum of 0.9, and the learning rate was
0.01 with a decay ratio of 0.8 after every 10,000 iterations.
Training took about 20 h on an NVIDIAGeForce GTX Titan
X Pascal GPU.

Evaluation and results

Synthetic data

As described in the “Training setup” section, the data were
split into 702 training and 100 test datasets. The registration
performance was evaluated qualitatively and quantitatively,
by perturbing each test dataset 10 times, resulting in 1000
test cases.

Qualitative evaluation

Toevaluate themethodqualitatively, the projections of theLV
model were compared with the corresponding fluoroscopy
images after registration, see Fig. 4. The only visual cue
inherently found in the fluoroscopy image is the shadow of
the left ventricle. Additionally, a cross-shaped landmark is
defined at the center of the LV, computed from the model of

the LV. The cross extends 10mm from the center point. In
successful registrations, the shadow of the left ventricle in
fluoroscopy matches the border of the projected LV model
and the landmarks are located at the same location, having
the same orientation, in both images, see Fig. 4c.

Quantitative evaluation

The target registration error (TRE) was measured by com-
puting the L2 norm of the points of the cross landmark
at the center, described in “Qualitative evaluation” section,
between the GT fluoro cross (blue) and the registered LV
model cross (red), see Fig. 4. The TRE was computed in
2D, because the registration is performed in-plane, the depth
is not adjusted, thus the 3D error would not provide more
information.

The method was evaluated against manual and gradient-
based automatic registration, see Table 1. The gradient-based
metrics were gradient correlation (GC), gradient information
(GI) and gradient orientation (GO) [5] and their versions
utilizing only the positive gradients (GC+, GI+, GO+), cor-
responding to the visible heart shadow in the images. The
agent’s results were significantly better than those of the
other approaches. The starting TRE of 22.8± 10.5 mm was
improved to 2.92± 2.22 mm, the median TRE was reduced
from 21.42 to 2.34mm, and the angular error from 7.17◦ ±
4.64◦ to 2.34◦±1.87◦. The best gradient-basedmethod, GI+,
has resulted in a TRE of 6.79 ± 4.75 mm with a median
of 5.63mm and an angular error of 7.28◦ ± 4.71◦. Show-
ing slightly lower accuracy than manual registration (mean:
6.48 ± 5.60 mm, median: 4.93mm, angle: 6.21◦ ± 5.17◦).

The main reason for failures in gradient-based methods
was that the highest metrics score is at the liver dome or the
spine, providing the strongest gradients in the DRRs. The
amendedmethods (GO+,GC+,GI+) counteract this, byusing
only positive gradients. These mainly correspond to the heart
shadow that is usually visible in X-rays (and the generated
DRRs) and the overlap with other structures, i.e., the liver,
is minimal. This has improved the results in the metrics GC
andGI. A further complication is that in many cases the heart
shadow is faint, or blurry. This is the main reason for lower
accuracy than in the agent-based approach. The agent can
leverage multiple, non-hand-crafted features, does not have
to rely only on the gradient information, and thus can register
reasonably well even in low-quality data. It has improved
the misalignment in every case. The results are promising,
showing an improvement compared to current techniques.
This suggests that the technique could be employed in cardiac
interventions, such as CRT.

The evolution of the TRE and individual parameters of
the agent is visualized in Fig. 5 for the case shown in Fig. 4.
The TRE decreases monotonously until convergence. The
figures show that a well-trained agent’s actions converge

123



1146 International Journal of Computer Assisted Radiology and Surgery (2018) 13:1141–1149

Fig. 4 Relation of fixed and moving image a before, b after registration, and c the overlay of the registered mask (green). Showing the ROI (green
box), the fixed (blue cross) and the moving image landmark (red cross)

Table 1 TRE of the cross landmark initially (start) and after registration

Mean StD. Percentiles

50% 60% 70% 80% 90% 100%

Start (mm) 22.80 10.50 21.42 25.22 30.03 33.50 36.96 47.88

GO (mm) 9.65 6.23 8.39 9.80 11.50 14.08 17.78 46.83

GO+ (mm) 10.49 5.97 9.42 10.87 12.49 15.00 18.54 38.02

GC (mm) 9.15 6.74 7.74 9.32 11.03 13.68 18.12 44.09

GC+ (mm) 7.80 6.30 5.91 7.51 9.30 11.55 16.43 48.37

GI (mm) 8.44 6.61 6.47 7.58 8.97 11.68 16.37 48.55

GI+ (mm) 6.79 4.75 5.63 6.50 7.48 8.84 11.77 46.14

Manuala (mm) 6.48 5.60 4.93 5.97 7.49 8.70 11.37 40.82

Agent (mm) 2.92 2.22 2.34 2.80 3.45 4.23 5.76 16.11

aManual registration for a single, randomly chosen perturbation in each case

(a) (b)

Fig. 5 Evolution of the a root mean square (RMS) TRE and b individual parameters in the case shown in Fig. 4. The parameter error curves
correspond to horizontal translation tx vertical translation ty and in plane rotation rz
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monotonously to the optimal alignment. A registration is per-
formed within 3 s.

Clinical CRT data

Further evaluationwasperformedon19clinicalCRTdatasets
to evaluate registration performance in a realistic scenario.
Each dataset consists of an MR acquisition and an X-ray
fluoroscopy image acquired in the anterior–posterior (AP)
C-arm angulation (0 ± 5◦ primary and 0 ± 2◦ secondary
angle). The end-diastolic X-ray frame is manually selected.
Corresponding end-diastolic models were extracted from the
MR images by a combination of a machine learning-based
landmark detection and a minimum path algorithm based on
histogram analysis [6].

An accurate ground truth registration is not available;
thus, accuracy was evaluated qualitatively. Since in car-
diac interventions, such as CRT, robustness of registration
has priority over accuracy, the method was evaluated for
robustness. After a rough, initital manual alignment, the
models in the 19 cases were perturbed multiple times by
in-plane, 3-DOF transformations, similarly as performed
on the training data. The perturbed models were registered
to the corresponding X-ray images. If the registration pro-
vides similar results for different perturbations, the method
is robust. Robustness was evaluated qualitatively and quan-
titatively.

Qualitative evaluation

Qualitative evaluation was performed by visualizing the
agents actions from the starting to the final positions. The
model was perturbed 100 times from the initial alignment to
generate misalignments of the center of the LV of 30mm.
The perturbed models were reregistered to the X-ray images,
and the path of the center of the LV was recorded. The
paths are visualized in Fig. 6 for two highly robust cases
(a–b), a robust case (c) and the case showing the lowest
robustness (d). A total of 15 patients showed very high
robustness; the agents path has always converged to the same
position. In one case, the final positions were in a less con-
fined area, see Fig. 6c. In two cases, the agent has only
diverged for a few starting positions. In the case shown in
Fig. 6d, some paths are diverging (the agent has left the
image), and the area where most paths end is not well con-
strained.

It is to be noted that the images were acquired in the stan-
dard clinical workflow; thus, they have different acquisition
parameters. This results in highly varying properties, such as
image quality, FOV, or resolution. Additionally, devices are
often in the FOV, such as fiducialmarkers (Fig. 6a–b) or inter-
ventional devices, such as catheters or even an ultrasound
transducer, see Fig. 6c. The registration appears to be robust

against most factors, such as fiducial markers or FOV. Cases
involving multiple devices (catheters, leads), or devices of
larger extent (ultrasound transducer), are more challenging.
The robustness is generally lower in these cases. The case of
lowest robustness (patient 15) has the lowest signal-to-noise
ratio and implanted electrodes. These appear to pose themain
limitation in performance.

The accuracy was evaluated visually for randomly sam-
pled results, showing the LV model overlayed on the X-ray
images, see Fig. 6e–h. In cases showing robustness, the bor-
der of the overlayed LV model is aligned well with the LV
shadow in the X-rays.

Quantitative evaluation

To measure robustness, the variance of the final registration
state for different perturbations was observed. The models
were perturbed on a regular grid of translations (−30 to
30 mm, with 5mm sampling) with random rotations (− 15
to 15), starting from a rough inititial alignment, resulting in
169 perturbations per case. The models were reregistered to
the X-ray images. The median final position x̃ f of the cross
landmark was used as a reference. The L2 norms of the final
positions x f were computed relative to this position for each
dataset separately:

e f = ‖x f − x̃ f ‖2. (4)

The resulting deviations e f show minor variance. In some
patients, such as patient 15, the trajectory was diverging for
perturbations at the edge of the capture range. In ten patients,
there was no divergence. The patient data with the worst
performance (15) had14%outliers. It is to be noted that errors
above the training range (35mm) are diverging trajectories.
Themedian deviationwas approximately 1mm in every case.
It was below 5mm in 97.16% of all cases, and 90% of all
deviations were below 1.42mm.

Conclusion

In this paper, a novel method for registering 3D preoperative
models to 2D intraoperative images for cardiac interventions,
such as cardiac resynchronization therapy (CRT), was pre-
sented. The method is agnostic to the preoperative modality,
it can be, e.g., MR, CT, or ultrasound imaging, since instead
of the raw image data, 3D models are registered. The models
are often available from standard clinical work. To register
preoperative models, i.e., the left ventricle (LV), to X-ray
fluoroscopy, imitation learning was performed. The method
was trained on models extracted from CT and artificial X-
rays, digitally reconstructed radiographs (DRRs) (Fig. 7).
It was shown that the method is robust against segmen-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Cases showing different degrees of robustness. a–dConvergence
of the center point through the agents actions from various starting
positions on the boundary of the purple circle. e–h Randomly chosen

exemplary results. a P8: highly robust b P12: highly robust c P16: robust
d P15: least robust e P8: success f P12: success g P16: success h P15:
failure
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Fig. 7 Deviations of results from the median. The points mark the
outliers

tation errors and can register LV models to DRRs with
high robustness and accuracy. The trained system can be
applied to other modalities, i.e., MR to X-ray fluoroscopy.
The robustness and fast performance proves clinical feasibil-
ity. Furthermore, there is no interference with the standard
clinical workflow: Preoperative models from clinical report-

ing can be used, and a single X-ray acquisition is required.
Future goals are to demonstrate good performance on multi-
ple preoperative modalities, bodyparts, and multiple C-arm
angulations, making the method widely applicable in various
clinical workflows.
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