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Abstract. Breast cancer is one of the leading causes of mortality in
women. Early detection and treatment are imperative for improving sur-
vival rates, which have steadily increased in recent years as a result of
more sophisticated computer-aided-diagnosis (CAD) systems. CAD sys-
tems are essential to reduce subjectivity and supplement the analyses
conducted by specialists. We propose a transfer learning based approach,
for the task of breast histology image classification into four tissue sub-
types, namely, normal, benign, in situ carcinoma and invasive carcinoma.
The histology images, provided as part of the BACH 2018 grand chal-
lenge, were first normalized to correct for color variations induced during
slide preparation. Subsequently, image patches were extracted and used
to fine-tune Google‘s Inception-V3 and ResNet50 convolutional neural
networks (CNNs), both pre-trained on the ImageNet database, enabling
them to learn domain-specific features, necessary to classify the histol-
ogy images. Classification accuracy was evaluated using 3-fold cross val-
idation. The Inception-V3 network achieved an average test accuracy of
97.08% for four classes, marginally outperforming the ResNet50 network,
which achieved an average accuracy of 96.66%.

1 Introduction

According to a recent report published by the American Cancer Society, breast
cancer is the most prevalent form of cancer in women, in the USA. In 2017 alone,
studies indicate that approximately 252,000 new cases of invasive breast cancer
and 63,000 cases of in situ breast cancer are expected to be diagnosed, with
40,000 breast cancer-related deaths expected to occur [1]. Consequently, there
is a real need for early diagnosis and treatment, in order to reduce morbidity
rates and improve patients’ quality of life. Histopathology remains crucial to the
diagnostic process and the gold standard for differentiating between benign and
malignant tissue, and distinguishing between patients suffering from in situ and
invasive carcinoma [2]. Diagnosis and identification of breast cancer sub-types
typically involve collection of tissue biopsies from masses identified using mam-
mography or ultrasound imaging, followed by histological analysis. Tissue sam-
ples are usually stained with Hematoxylin and Eosin (H&E) and subsequently,



visually assessed by pathologists using light microscopy. Visual assessment of
tissue microstructure and the overall organization of nuclei in histology images
is time-consuming and can be highly subjective, due to the complex nature of
the visible structures. Consequently, automatic computer-aided-diagnosis sys-
tems are essential to reduce the workload of specialists by improving diagnostic
efficiency, and to reduce subjectivity in disease classification.

Classification of histology images into cancer sub-types and metastases de-
tection in whole-slide images are challenging tasks. Numerous studies have pro-
posed automated approaches to address the same in recent years. Kothari et
al. [3] examined the utility of biologically interpretable shape-based features for
classification of histological renal tumor images. They extracted shape-based
features that captured the distribution of tissue structures in each image and
employed these features within a multi-class classification model. Doyle et al.
[4] proposed an automated framework for distinguishing between low and high
grades of breast cancer, from H&E-stained histology images. They employed
a large number of image-derived features together with spectral clustering to
reduce the dimensionality of the feature space. The reduced feature set was sub-
sequently used to train a support vector machine classifier to distinguish between
cancerous and non-cancerous images, and low and high grades of breast cancer.
Wang et al. [5] proposed an award-winning (at the International Symposium on
Biomedical Imaging) deep learning framework for whole-slide classification and
cancer metastases detection in breast sentinel lymph node images. In a recent
study [6], the authors proposed a convolutional neural network (CNN) based
approach to classifying H&E-stained breast histology images into four tissue
classes, namely, healthy, benign, in situ carcinoma and invasive carcinoma, with
a limited number of training samples. The features extracted by the CNN were
used for training a Support Vector Machine classifier. Accuracies of 77.8% for
four class classification and 83.3% for carcinoma/non-carcinoma classification
were achieved. In this study, we investigate the efficacy of transfer-learning for
the task of image-wise classification of H&E-stained breast cancer histology im-
ages and examine the classification performance of the pre-trained Inception-V3
[7] and ResNet50 [8] networks, on the BACH 2018 challenge data set.

2 Methods

The data set used in this study was provided as part of BACH 2018 grand
challenge1, comprising H&E-stained breast histology microscopy images. The
images are high-resolution (2040 × 1536 pixels), uncompressed, and annotated as
normal, benign, in situ carcinoma or invasive carcinoma, as per the predominant
tissue type visible in each image. The annotation was performed by two medical
experts and images with disagreements were discarded. All images were digitized
using the same acquisition conditions, with a magnification of 200×. The data
set comprises 400 images (100 samples per class), with a pixel scale of 0.42 µm

1 https://iciar2018-challenge.grand-challenge.org/home/



× 0.42 µm. It was partitioned into training, validation (80 samples) and test (20
samples) sets, by selecting images at random for each class independently.

2.1 Stain Normalization

A common problem with histological image analysis is substantial variation in
color between images due to differences in color responses of slide scanners, raw
materials and manufacturing techniques of stain vendors, and staining protocols.
Consequently, stain normalization is essential as a pre-processing step, prior to
conducting any analyses using histology images. Various strategies have been
proposed for stain normalization in histological images. In this paper, we used
the approach proposed by Reinhard et al. [9] which matches the statistics of
color histograms of a source and target image, following transformation of the
RGB images to the de-correlated LAB color space. Here, the mean and stan-
dard deviation of each channel in the source image is matched to that of the
target by means of a set of linear transforms in the LAB color space. Histogram
matching techniques assume that the proportions of stained tissue components
for each staining agent are similar across the images being normalized. Fig. 2
illustrates the effect of stain normalization on a few samples from the breast
cancer histology image data set using the method proposed in [9].

Fig. 1: Examples of histology images from each class before (top row) and after
(bottom row) stain normalization.

2.2 Pre-processing

Deep learning approaches are heavily dependent on the volume of training data
available, with models of higher complexity requiring more data to generalize
well and avoid over-fitting to the training samples. A common challenge in the



medical domain is a lack of sufficient data, as was the case with the BACH 2018
challenge. Additionally, the breast histology images provided in the challenge
data set are very large in size, spanning 2040 × 1536 pixels. In order to ad-
dress the issues of limited data and large image sizes, we extracted patches from
each image and augmented the data set using a variety of rigid transformations,
thereby increasing the number of training samples. Image-wise classification into
tissue/cancer sub-types requires learning features describing overall tissue archi-
tecture and localized organization of nuclei. Consequently, we chose to extract
patches of size 512 × 512 pixels from each image, while ensuring 50% overlap
between patches (similar to [6]), as there was no guarantee that smaller patches
would contain information relevant to the class assigned to the whole image.
This resulted in the extraction of 35 patches from each image and a final data
set comprising 11,200 patches.

Additionally, to enrich the training set we augmented the data by applying
varying degrees of rotation and flipping the extracted patches. This mode of
data augmentation emulates a real-world scenario as there is no fixed orientation
adopted by pathologists when analyzing histology slides/images. Such a patch
extraction and dataset augmentation approach have been used previously for an
identical classification problem [6]. The training data was augmented by flipping
the extracted patches along their horizontal and vertical edges. Thus, each patch
was transformed to create 2 additional, unique patches resulting in a total of
33,600 training and validation patches from the original 320 training images.
During the training, we also applied real-time augmentation to rotate the patches
randomly by 90, 180, 270 degrees. The label for each patch was inherited from the
class assigned to the original image. The remaining ‘unseen’ 80 images were used
as test data, to evaluate the classification accuracy of the methods investigated.

2.3 Pre-trained CNN Architectures

The application of CNNs pre-trained on large annotated image databases, such
as ImageNet for example, to images from different modalities/domains, for var-
ious classification tasks, is referred to as transfer learning. Pre-trained CNNs
can be fine-tuned on medical image data sets, enabling large networks to con-
verge quicker and learn domain-/task-specific features. Fine-tuning pre-trained
CNNs is crucial for their re-usability [10]. With such an approach, the original
network architecture is maintained and the pre-trained weights are used to ini-
tialize the network. The initialized weights are subsequently updated during the
fine-tuning process, enabling the network to learn features specific to the task
of interest. Recently, numerous studies have demonstrated that fine-tuning is
effective and efficient for a variety of classification tasks in the medical domain
[11]. In this study, we investigate two well known pre-trained CNN architectures,
namely, Google‘s Inception-V3 [7] and deep residual convolutional (ResNet50)
network [8], which are fine-tuned to learn domain and modality specific features
for classifying breast histology images. ResNet50 is based on a residual learning
framework where, layers within a network are reformulated to learn a residual



mapping rather than the desired unknown mapping between the inputs and out-
puts. Such a network is easier to optimize and consequently, enables training
of deeper networks, which correspondingly leads to an overall improvement in
network capacity and performance. The Inception-V3 network employs factor-
ized inception modules, allowing the network to choose suitable kernel sizes for
the convolution layers. This enables the network to learn both low-level features
with small convolutions and high-level features with larger ones.

Fig. 2: Breast histology image classification workflow by fine-tuning Google‘s
Inception-V3 and ResNet50 network architectures. The block on the left repre-
sents the pre-processing steps and the blocks on the right depict the Inception-V3
(top) and ResNet50 (bottom) network architectures.

The dataset was pre-processed as described in the previous section and used
to fine-tune Google‘s Inception-V3 and ResNet50 networks. While such a transfer
learning approach has been adopted for a variety of classification and detection
tasks in medical images, few studies have employed the same for breast can-
cer histology image classification. Fig. 2 describes our proposed workflow for
the Inception-V3 and ResNet50 network architectures. The original Inception
network is modified by replacing the last 5 layers with an average global pool-
ing layer, 1 fully connected layer, and a softmax classifier. The latter outputs
probabilities for each of the four classes of interest, for each patch, fed as input
to the network during the fine-tuning process. The stochastic gradient descent



optimizer with momentum was employed to train the Inception-V3 network,
with a batch size of 32 for both training and validation. A learning rate and
Nesterov momentum of 0.0001 and 0.9, respectively, were found to be suitable.
The network stopped learning after 100 epochs. The same fine-tuning approach
was applied to the ResNet50 network with identical optimization parameters.
Model performance was measured by first classifying several patches extracted
from each unseen test image, and then combining the classification results of
all patches through a majority voting process, to obtain the final class label for
each image. We trained and evaluated classification accuracy of both networks
with the same configuration using 3-fold cross-validation to ensure consistency.

3 Results And Discussion

We conducted several experiments on the challenge data set to evaluate the
classification performance of the networks investigated. First, the overall pre-
diction accuracy of the networks was assessed as the ratio between the number
of images classified correctly and the total number of images evaluated in the
cross validation experiments. Average patch-wise and image-wise classification
accuracy are presented in Table 1 for Inception-V3 and ResNet50. We also im-
plemented the CNN model proposed in [6] to compare the performance of these
transfer learning approaches with a CNN trained from scratch (refer to Table
1). Patch-wise classification accuracy of InceptionV3 for the validation and test
sets were 93.40% and 92.95%, respectively. The ResNet50 network on the other
hand achieved patch-wise classification accuracies of 93.02% and 92.95% for the
validation and test sets, respectively. Additionally, the results presented in Table
1 indicate that transfer learning approaches achieve significant improvements in
classification accuracy compared to a state-of-the-art CNN model trained from
scratch [6]. As discussed previously, whole image classification was achieved us-
ing a majority voting process, based on the patch-wise class labels estimated
using each network. The InceptionV3 achieved whole-image classification ac-
curacies of 96.66% and 97.08%, for the validation and test sets, respectively.
Meanwhile, the ResNet50 network achieved classification accuracies of 95.41%
and 96.66% for the validation and test sets, respectively. Overall, Incepvtion-
V3 and ResNet50 consistently outperformed the [6] network, achieving higher
patch-wise and image-wise classification accuracy, for both the validation and
test data.

We also computed the average receiver operating characteristic (ROC) curves
(evaluated across the cross validation experiments) for each network, depicted in
Fig. 3. ROC curves plot the true positive rate (TPR) versus the false positive rate
(FPR) at different threshold settings. TPR also known as sensitivity, represents
the proportion of correctly classified samples and FPR, also known as fall-out,
represents the proportion of incorrectly classified samples. Thus classification ac-
curacy was measured as the area under the ROC curve (AUC), with an area of
1 representing perfect classification on the test set. We assessed network perfor-
mance for each class individually by computing their ROCs and calculated their



Table 1: Average patch-wise and image-wise classification accuracy (%) for all
three networks.

Model Patch-Wise Image-Wise

Validation Set(%) Test Set(%) Validation Set(%) Test Set(%)

Inception-V3 93.40 92.95 96.66 97.08

ResNet50 93.02 92.95 95.41 96.66

Arajo et al. [6] 88.95 88.15 82.91 93.33

Fig. 3: ROC curves for unseen test set using Google‘s Inception-V3 and ResNet50
fine-tuned architectures.

corresponding AUCs (presented in Fig. 3). The overall specificity and sensitivity
of both InceptionV3 and ResNet50 is approximately 99.0%.

4 Conclusions

A transfer learning-based approach for classification of H&E-stained histological
breast cancer images is presented in this study. The network learns features us-
ing Google‘s Inception-V3 and residual network (ResNet50) architectures, which
have been pre-trained on ImageNet. The data set of images provided for the
BACH 2018 grand challenge are classified into four tissue classes, namely, nor-
mal, benign, in situ carcinoma and invasive carcinoma. We trained all the net-
works using 80% of the data set for training and validation, in all 3-fold cross
validation experiments, and tested their performance on the remaining 20% of
images. The proposed transfer-learning approach is simple, effective and efficient
for automatic classification of breast cancer histology images. The investigated
networks successfully transferred ImageNet knowledge encoded as convolutional
features to the problem of histology image classification, in the presence of lim-
ited training data. The residual network (ResNet50) and Google‘s Inception-V3
outperformed a trained CNN network from scratch consistently, in terms of clas-
sification accuracy. The presented work demonstrates the applicability and pow-



erful classification capacity of transfer learning approaches, for the automatic
analysis of breast cancer histology images. However, majority voting is a limita-
tion of this study as there is a possibility that cancerous cells are present in only
a small part of the image and the rest of the image depicts healthy or benign.
Such cases lead to high false negative rates. Future work will look to address
this limitation of majority voting by devising a suitable alternative approach.
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