

FACULTY OF ENGINEERING

Dilated Convolutions in Neural Networks for Left Atrial Segmentation in 3D Gadolinium Enhanced-MRI

Sulaiman Vesal¹, Nishant Ravikumar¹, and Andreas Maier¹

¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany

Introduction

 Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, with higher rates of incidence among aging populations ^[1].

Aim:

Automatic segmentation of the left atrial chamber:

 (1) Improve understanding of the electrical and structural remodelling characteristics of the human atria
 (2) Diagnosis, treatment planning and patient prognosis
 (3) Manual segmentation is highly subjective ^[2]

Results and Discussion

- Five-fold cross validation experiments using 80 Late Gadolinium Enhanced-MRI volumes
 - a) Significant improvements in segmentation accuracy
 - → incorporating mutli-scale information using **residual connections**
 - \rightarrow adding dilated convolutions to expand field of view
 - \rightarrow dataset normalization using mean/std subtraction

Material and Methods

Accurate organ segmentation requires incorporation of both local and global information.

3D U-Net + DR

- A modified version of the 3D U-Net, using dilated convolutions ^[3] in lowest part of the network (Fig. 1)
 - → Extract features spanning a wider spatial range
- Residual connections to better incorporate multi-scale image information
- 3D convolutions to prevent loss of inter-slice information

Pre-Processing

- 90.1 % Dice coefficient accuracy on 20 unseen LGE-MRIs
- 3D U-Net + DR with **2.6 million** parameters

Loss Function

• Binary Cross Entropy + Dice Coefficient Loss^[4]

 $\zeta(y,\hat{y}) = \zeta_{bce}(y,\hat{y}) + \zeta_{dc}(y,\hat{y})$

Figure 2: 3D U-Net and 3D U-Net + DR segmentation outputs.

Methods	Training			Validation			Testing		
	Loss	Dice	Jaccard	Loss	Dice	Jaccard	Loss	Dice	Jaccard
3D U-Net									
(Min max	0.126	0.896	0.844	0.227	0.818	0.728	0.223	0.818	0.74
Normalisation)									
3D U-Net + DR									
(Min max	0.093	0.923	0.873	0.179	0.858	0.768	0.185	0.848	0.77
Normalisation)									
3D U-Net									
(Mean/STD	0.038	0.968	0.943	0.157	0.879	0.797	0.133	0.898	0.819
normalisation)									
3D U-Net + DR									
(Mean/STD	0.030	0.975	0.951	0.125	0.902	0.826	0.129	0.901	0.825
normalisation)									

Conclusion

- Proposed segmentation network **3D U-Net + DR**:
 - → Use of 3D convolutions prevented loss of inter-slice information
 - → Achieved higher segmentation accuracy than 3D U-Net due to incorporation of global context via dilated convolutions
 - → Fewer parameters (2.6 million vs 3.3 million)

Figure 1: 3D U-Net + DR network architecture.

 \rightarrow Fast and robust segmentation (2.2 seconds/volume)

References

[1] Guang Y *et al.* Medical Physics. 2018
[2] Qian T *et al.* Magnetic Resonance Imaging Journal. 2018
[3] Yu F *et al.* ICLR. 2016
[4] Milletari F et al. 3D Vision. 2016

Contact

Sulaiman Vesal Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany

Acknowledgements

