

A new calibration-free beam hardening reduction method for industrial CT

ECC² for industrial CT

Tobias Würfl¹, Nicole Maaß², Frank Dennerlein², Andreas K. Maier¹ ¹Pattern Recognition Lab, FAU Erlangen-Nürnberg; ²Siemens Healthcare GmbH 08.02.2018

Beam Hardening

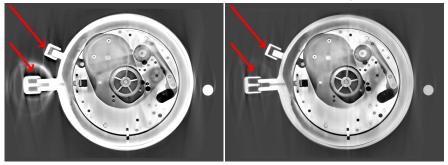
Standard Reconstruction

- Beam hardening appears when using polychromatic X-rays
- → Causes artifacts like cupping and streaks

Beam Hardening

Standard Reconstruction

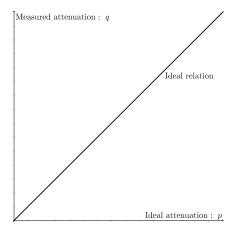
Beam Hardening Reduced



- Beam hardening appears when using polychromatic X-rays
- → Causes artifacts like cupping and streaks
- Can be reduced by software methods

Artifact Reduction

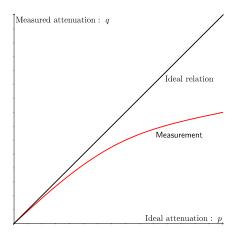
Mono material compensation



Artifact Reduction

Mono material compensation

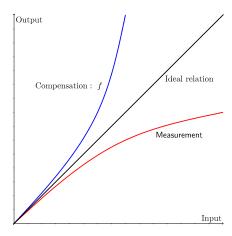
- Well posed function inversion
 problem
- Function can be obtained by material absorption properties



Artifact Reduction

Mono material compensation

- Well posed function inversion
 problem
- Function can be obtained by material absorption properties
- Compensation function can be obtained
 - by inversion of the function
 - by direct fitting



Reference-based Algorithms and Their Shortcomings

- Material absorption properties
 - do not incorporate detector response
 - require to know the spectrum of the X-ray source

Reference-based Algorithms and Their Shortcomings

- Material absorption properties
 - · do not incorporate detector response
 - require to know the spectrum of the X-ray source
- Phantom measurements
 - are additional effort
 - require a phantom
 - · are impossible if the material of the test object is unknown

Reference-based Algorithms and Their Shortcomings

- Material absorption properties
 - do not incorporate detector response
 - require to know the spectrum of the X-ray source
- Phantom measurements
 - are additional effort
 - require a phantom
 - · are impossible if the material of the test object is unknown

→ Achieve competitive image quality based on measurement itself

Reference-free Algorithms

- 3D image quality measures e.g. Entropy
 - need reconstruction → computationally expensive
 - · do not necessarily coincide with application relevant image quality

Reference-free Algorithms

- 3D image quality measures e.g. Entropy
 - need reconstruction → computationally expensive
 - do not necessarily coincide with application relevant image quality
- · Iterative algorithms with a realistic forward model
 - → are even more computationally expensive
 - → rely on tuning of parameters

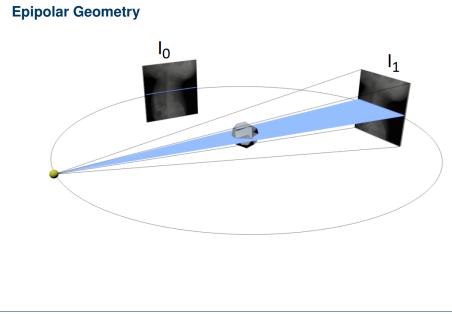
Reference-free Algorithms

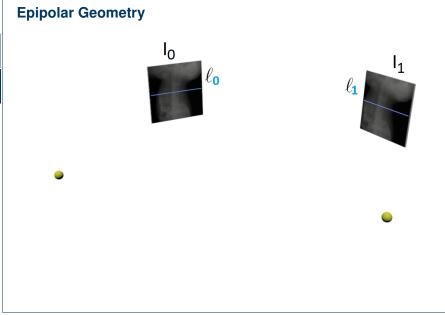
- 3D image quality measures e.g. Entropy
 - need reconstruction → computationally expensive
 - do not necessarily coincide with application relevant image quality
- Iterative algorithms with a realistic forward model
 - → are even more computationally expensive
 - → rely on tuning of parameters
- Projection-based consistency conditions
 - do not need reconstruction → computationally efficient
 - → are mathematically well founded
 - → are available for cone-beam geometry [1]

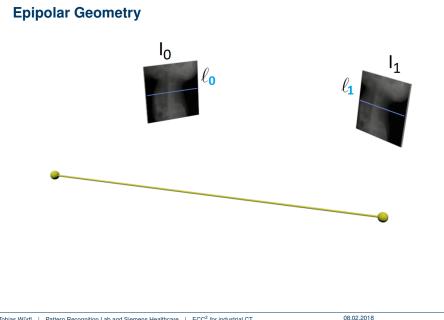
→ We use the Epipolar Consistency Condition (ECC) [3]

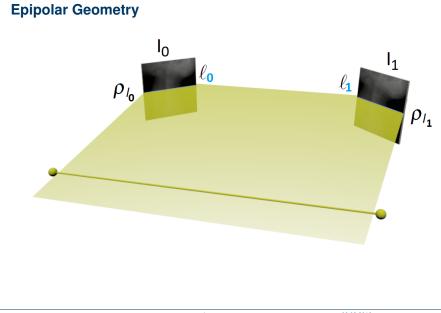
Algorithm introduced in

T. Würfl, N. Maaß, F. Dennerlein, X. Huang, and A. Maier, "Epipolar Consistency Guided Beam Hardening Reduction - ECC²", in *Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine*, G. Wang and X. Mou, Eds., 2017, pp. 181–185









Epipolar Consistency

- Plane integrals $ho_{\rm I}(\ell)$ can only be obtained in 3D parallel beam geometry
- In cone-beam geometry only their derivatives $\frac{\partial}{\partial t} \rho_{\mathbf{I}}(\ell)$ can be obtained
- Multiple measurements of the same plane integral derivative should be equal:

$$\frac{\partial}{\partial t}\rho_{l_0}(\ell_0)=\frac{\partial}{\partial t}\rho_{l_1}(\ell_1)$$

Epipolar Consistency

- Plane integrals $ho_{\rm I}(\ell)$ can only be obtained in 3D parallel beam geometry
- In cone-beam geometry only their derivatives $\frac{\partial}{\partial t} \rho_{\mathbf{I}}(\ell)$ can be obtained
- Multiple measurements of the same plane integral derivative should be equal:

$$rac{\partial}{\partial t}
ho_{l_0}(\ell_0)=rac{\partial}{\partial t}
ho_{l_1}(\ell_1)+e$$

Epipolar Consistency

- Plane integrals $ho_{
 m I}(\ell)$ can only be obtained in 3D parallel beam geometry
- In cone-beam geometry only their derivatives $\frac{\partial}{\partial t} \rho_{I}(\ell)$ can be obtained
- Multiple measurements of the same plane integral derivative should be equal:

$$rac{\partial}{\partial t}
ho_{I_0}(\ell_0)=rac{\partial}{\partial t}
ho_{I_1}(\ell_1)+e$$

→Inequality shows data inconsistency and serves as cost function

- · We need a suitable model for beam hardening reduction
- Polynomial model adapted from [2]

$$f(q, \mathbf{w}) = \sum_{n=1}^{N} w_n q^n, \quad w \ge 0 \quad \forall w \in \mathbf{w}$$

- Linear in its parameters
- The constraint on the coefficients enforces monotone and convex solutions

ECC² - Epipolar Consistency Condition * Empirical Cupping Correction

• Use the linearity of Radon transform and derivative operator:

$$\sum_{n=1}^{N} w_n \left(\frac{\partial}{\partial t} \rho_{\mathbf{l}_0^n}(\ell_0) \right) \approx \sum_{n=1}^{N} w_n \left(\frac{\partial}{\partial t} \rho_{\mathbf{l}_1^n}(\ell_1) \right) + e$$

ECC² - Epipolar Consistency Condition * Empirical Cupping Correction

• Use the linearity of Radon transform and derivative operator:

$$\sum_{n=1}^{N} w_n \left(\frac{\partial}{\partial t} \rho_{\mathbf{l}_0^n}(\ell_0) \right) \approx \sum_{n=1}^{N} w_n \left(\frac{\partial}{\partial t} \rho_{\mathbf{l}_1^n}(\ell_1) \right) + e$$

- For one projection pair $\{I_0,I_1\}$ and one epipolar line set $\{\ell_0,\ell_1\}$:

$$e = \sum_{n=1}^{N} w_n a_n \quad \text{with:} \ a_n = \left(\frac{\partial}{\partial t} \rho_{I_0^n}(\ell_0) - \frac{\partial}{\partial t} \rho_{I_1^n}(\ell_1)\right)$$

ECC² - Epipolar Consistency Condition * Empirical Cupping Correction

• Use the **linearity** of Radon transform and derivative operator:

$$\sum_{n=1}^{N} w_n \Big(\frac{\partial}{\partial t} \rho_{\mathbf{l}_0^n}(\ell_0) \Big) \approx \sum_{n=1}^{N} w_n \Big(\frac{\partial}{\partial t} \rho_{\mathbf{l}_1^n}(\ell_1) \Big) + e$$

• For one projection pair $\{I_0,I_1\}$ and one epipolar line set $\{\ell_0,\ell_1\}$:

$$e = \sum_{n=1}^{N} w_n a_n \quad \text{with:} \ a_n = \left(\frac{\partial}{\partial t} \rho_{\mathbf{I}_0^n}(\ell_0) - \frac{\partial}{\partial t} \rho_{\mathbf{I}_1^n}(\ell_1)\right)$$

• Considering many projection pairs and epipolar lines produces *M* such equations:

$$\min(\|\mathbf{A}\mathbf{w}\|_2^2)$$
 s.t. $\mathbf{w}^T \mathbf{b} = \boldsymbol{\beta}, \quad w \ge 0 \quad \forall \, w \in \mathbf{w}$

- *b* and β determine the **effective energy**
- Solved by general-purpose non-linear optimizer, supporting constraints, e.g. Method of Moving Asymptotes (MMA)[5]

Evaluation of ECC² for Industrial CT

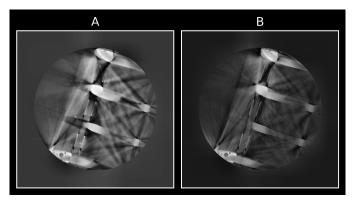


Figure: Example from the user study.

• Comparison to manual optimization using 3 reduction strength presets

Evaluation of ECC² for Industrial CT

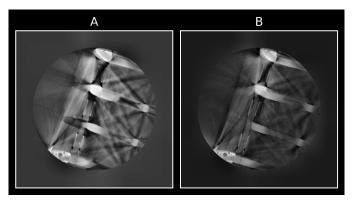
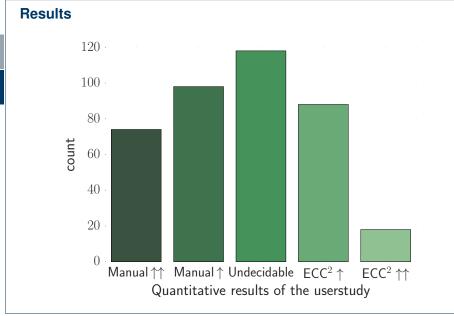


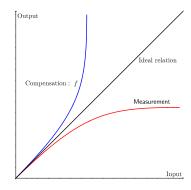
Figure: Example from the user study. B is the result using ECC².

- Comparison to manual optimization using 3 reduction strength presets
- User study conducted as a randomized, blind A-B test; 5 ordinal levels
- Ten CT expert raters, three from an industrial CT background
- 40 diverse datasets: Circuit board, metal stopwach, capacitor ...



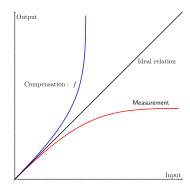
Photon Starvation

- Most common problem in low quality results
- Vanishing slope leads to an infinite slope in the inverse function
- → ECC² overestimates beam hardening



Photon Starvation

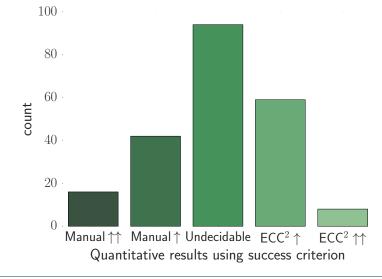
- Most common problem in low quality results
- Vanishing slope leads to an infinite slope in the inverse function
- → ECC² overestimates beam hardening



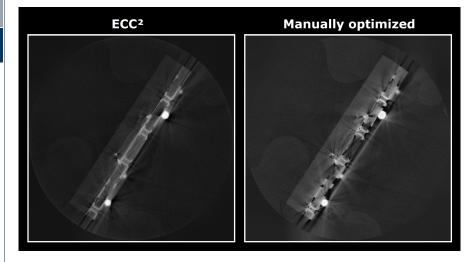
Success criterion

- Can be detected because the maximum possible curvature is estimated
- Equivalent to the coefficient *w_N* being the only non-zero component
- → Mark those results as failure cases

Results Using the Success Criterion



Example Result



Conclusion

- Our algorithm is applicable to measured industrial CT data
- It consumes only about one third of the time of a reconstruction

Conclusion

- Our algorithm is applicable to measured industrial CT data
- It consumes only about one third of the time of a reconstruction
- The ECC² algorithm **struggles** in presence of **photon starvation**
- This failure case can be detected using our new success criterion
- After rejecting failed cases it **outperforms** even **manual optimization** on three discrete settings

Conclusion

- Our algorithm is applicable to measured industrial CT data
- It consumes only about one third of the time of a reconstruction
- The ECC² algorithm **struggles** in presence of **photon starvation**
- This failure case can be detected using our new success criterion
- After rejecting failed cases it **outperforms** even **manual optimization** on three discrete settings

Outlook

- Increase robustness to photon starvation
- Extend to the multi-material scenario
- Reduce scatter using a consistency-based algorithm

Thanks for listening. Any questions?

References I

- [1] C. Debbeler, N. Maaß, M. Elter, F. Dennerlein, and T. M. Buzug, "A new ct rawdata redundancy measure applied to automated misalignment correction", in *Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine*, 2013, pp. 264–267.
- [2] M. Kachelrieß, K. Sourbelle, and W. A. Kalender, "Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography", *Medical Physics*, vol. 33, no. 5, pp. 1269–1274, 2006.
- [3] A. Aichert, M. Berger, J. Wang, et al., "Epipolar consistency in transmission imaging", IEEE Transactions on Medical Imaging, vol. 34, no. 11, pp. 2205–2219, 2015.
- [4] T. Würfl, N. Maaß, F. Dennerlein, X. Huang, and A. Maier, "Epipolar Consistency Guided Beam Hardening Reduction - ECC²", in *Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine*, 2017, pp. 181–185.

References II

[5] K. Svanberg, "The method of moving asymptotes-a new method for structural optimization", *International journal for numerical methods in engineering*, vol. 24, no. 2, pp. 359–373, 1987.