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Beam Hardening

Standard Reconstruction

e Beam hardening appears when using polychromatic X-rays
- Causes artifacts like cupping and streaks

Tobias Wiirfl | Pattern Recognition Lab and Siemens Healthcare | ECC? for industrial CT 08.02.2018



2

Beam Hardening

Standard Reconstruction Beam Hardening Reduced

e Beam hardening appears when using polychromatic X-rays
- Causes artifacts like cupping and streaks
e Can be reduced by software methods
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Artifact Reduction

Measured attenuation : ¢
Mono material compensation

Ideal relation

Ideal attenuation : p
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Artifact Reduction

Measured attenuation : ¢

I Mono material compensation

e Well posed function inversion Ideal relation
problem

e Function can be obtained by
material absorption properties

Measurement

Ideal attenuation : p
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Artifact Reduction

Mono material compensation

* Well posed function inversion
problem

e Function can be obtained by
material absorption properties

e Compensation function can be
obtained

e by inversion of the function
® by direct fitting

Output

. . Ideal relation
Compensation : f

Measurement

Input
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Reference-based Algorithms and Their Shortcomings

e Material absorption properties

e do not incorporate detector response
e require to know the spectrum of the X-ray source
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Reference-based Algorithms and Their Shortcomings

e Material absorption properties

e do not incorporate detector response

e require to know the spectrum of the X-ray source
e Phantom measurements

® are additional effort
® require a phantom
* are impossible if the material of the test object is unknown
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Reference-based Algorithms and Their Shortcomings

e Material absorption properties

e do not incorporate detector response

e require to know the spectrum of the X-ray source
e Phantom measurements

® are additional effort
® require a phantom
* are impossible if the material of the test object is unknown

- Achieve competitive image quality based on measurement itself
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Reference-free Algorithms

e 3D image quality measures e.g. Entropy

® need reconstruction - computationally expensive
* do not necessarily coincide with application relevant image quality
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Reference-free Algorithms

e 3D image quality measures e.g. Entropy

® need reconstruction - computationally expensive
* do not necessarily coincide with application relevant image quality

e [terative algorithms with a realistic forward model

- are even more computationally expensive
= rely on tuning of parameters
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Reference-free Algorithms

e 3D image quality measures e.g. Entropy

® need reconstruction - computationally expensive
* do not necessarily coincide with application relevant image quality

e [terative algorithms with a realistic forward model

- are even more computationally expensive
= rely on tuning of parameters

® Projection-based consistency conditions

* do not need reconstruction » computationally efficient
- are mathematically well founded
- are available for cone-beam geometry [1]

- We use the Epipolar Consistency Condition (ECC) [3]
e Algorithm introduced in

T. Wirfl, N. MaaB3, F. Dennerlein, X. Huang, and A. Maier, “Epipolar Consistency Guided
Beam Hardening Reduction - ECC?”, in Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine, G. Wang and X. Mou, Eds., 2017, pp. 181-185
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Epipolar Geometry

18]
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Epipolar Geometry
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Epipolar Geometry
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Epipolar Geometry

P, b
Pi,

@—
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Epipolar Consistency

e Plane integrals py(¢) can only be obtained in 3D parallel beam geometry

® |n cone-beam geometry only their derivatives (%p. (¢) can be obtained
e Multiple measurements of the same plane integral derivative should be equal:

d 0
Eplo(go) = Eph (£1)
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Epipolar Consistency

e Plane integrals py(¢) can only be obtained in 3D parallel beam geometry

® |n cone-beam geometry only their derivatives (%p. (¢) can be obtained
e Multiple measurements of the same plane integral derivative should be equal:

d d
EPIO(KO) = 3;Pn (fr)+e
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Epipolar Consistency

e Plane integrals py(¢) can only be obtained in 3D parallel beam geometry

® |n cone-beam geometry only their derivatives (%p. (¢) can be obtained
e Multiple measurements of the same plane integral derivative should be equal:

d 0
Eplo(go) = Eph (61)—’_ e

-lnequality shows data inconsistency and serves as cost function

* \We need a suitable model for beam hardening reduction

¢ Polynomial model adapted from [2]
N
flgw)=Y w,g", w>0 VYwew
n=1
e Linear in its parameters
e The constraint on the coefficients enforces monotone and convex solutions
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E002 - Epipolar Consistency Condition * Empirical Cupping Correction

e Use the linearity of Radon transform and derivative operator:

$:w(2u00) = £ ()
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E002 - Epipolar Consistency Condition * Empirical Cupping Correction

e Use the linearity of Radon transform and derivative operator:

$:w(2u00) = £ ()

e For one projection pair {lg, 11} and one epipolar line set {{o, {1 }:
N

d d
e—= Z wpa, with: a, = (Epu}(&)) — Epl?(&))

n=1
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ECC2 - Epipolar Consistency Condition * Empirical Cupping Correction

e Use the linearity of Radon transform and derivative operator:

$:w(2u00) = £ ()

For one projection pair {lo, 11 } and one epipolar line set {£o, ¢+ }:

N

d d
e—= Z wpa, with: a, = (Ep“}(fo) — Epw(&))

n=1
e Considering many projection pairs and epipolar lines produces M such
equations:

min(||Aw|j3) stw'b=f, w>0 Vwew

b and 3 determine the effective energy
Solved by general-purpose non-linear optimizer, supporting constraints, e.g.
Method of Moving Asymptotes (MMA)[5]
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Evaluation of ECC? for Industrial CT

Figure: Example from the user study.

e Comparison to manual optimization using 3 reduction strength presets
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Evaluation of ECC? for Industrial CT

Figure: Example from the user study. B is the result using ECC?.
Comparison to manual optimization using 3 reduction strength presets
User study conducted as a randomized, blind A-B test; 5 ordinal levels
Ten CT expert raters, three from an industrial CT background
40 diverse datasets: Circuit board, metal stopwach, capacitor ...
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Results
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Quantitative results of the userstudy
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Photon Starvation

® Most common problem in low quality results

Output

Ideal relation

Compensation : f

e Vanishing slope leads to an infinite slope in Measurement
the inverse function
- ECC?2 overestimates beam hardening
Input
08.02.2018 10
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Photon Starvation

® Most common problem in low quality results

e Vanishing slope leads to an infinite slope in
the inverse function
- ECC?2 overestimates beam hardening

Success criterion

Output

Ideal relation

Compensation : f

Measurement

Input

e Can be detected because the maximum possible curvature is estimated
e Equivalent to the coefficient wy being the only non-zero component

- Mark those results as failure cases
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Quantitative results using success criterion
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Example Result

Manually optimized
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Conclusion

e Qur algorithm is applicable to measured industrial CT data
¢ |t consumes only about one third of the time of a reconstruction
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Conclusion

e Qur algorithm is applicable to measured industrial CT data

¢ |t consumes only about one third of the time of a reconstruction
The ECC? algorithm struggles in presence of photon starvation
This failure case can be detected using our new success criterion

e After rejecting failed cases it outperforms even manual optimization on
three discrete settings
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Conclusion

e Qur algorithm is applicable to measured industrial CT data
¢ |t consumes only about one third of the time of a reconstruction

The ECC? algorithm struggles in presence of photon starvation

This failure case can be detected using our new success criterion

e After rejecting failed cases it outperforms even manual optimization on
three discrete settings

Outlook

® Increase robustness to photon starvation
e Extend to the multi-material scenario
* Reduce scatter using a consistency-based algorithm
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Thanks for listening.
Any questions?
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