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Abstract—In this paper, we present a new deep learning
framework for 3-D tomographic reconstruction. To this end, we
map filtered back-projection-type algorithms to neural networks.
However, the back-projection cannot be implemented as a fully
connected layer due to its memory requirements. To overcome
this problem, we propose a new type of cone-beam back-
projection layer, efficiently calculating the forward pass. We
derive this layer’s backward pass as a projection operation.
Unlike most deep learning approaches for reconstruction, our
new layer permits joint optimization of correction steps in volume
and projection domain. Evaluation is performed numerically on
a public dataset in a limited angle setting showing a consistent
improvement over analytical algorithms while keeping the same
computational test-time complexity by design. In the region
of interest, the peak signal-to-noise ratio has increased by
23%. In addition, we show that the learned algorithm can be
interpreted using known concepts from cone beam reconstruction:
the network is able to automatically learn strategies such as
compensation weights and apodization windows.

I. INTRODUCTION

EEP LEARNING has revolutionized the fields of sig-

nal processing and pattern recognition. Many of those
advances have been transferred successfully to the field of
medical image processing, promising large improvements on
image understanding tasks like computer aided diagnosis [l1]],
[2]. Those promising results motivate the question whether
similar techniques can be exploited to improve 3-D recon-
struction. While 3-D scene retrieval from 2-D observations
has been studied in the computer vision context, the problem
statements are considerably different than the ones faced in
cone-beam computed tomography (CBCT). Consequently, the
application of deep learning techniques to this field may require
fundamentally new approaches.

A recent perspective article [3]] shared a vision of utilizing
machine learning to create a new class of data-driven image
reconstruction algorithms to improve on traditional analytic
and iterative methods. The authors conclude that challenges
eluding proper mathematical modelling seem to be particularly
promising candidates for machine learning approaches.

One of the most famous challenges of this category is
tomographic CBCT reconstruction from incomplete data. In this
work, we are particularly interested in the limited angle problem.
Emerging artifacts are deterministic suggesting that methods
based on machine learning, e.g. using neural networks, may
effectively suppress those and thereby outperform traditional
approaches. As envisioned by Wang [3]], a Neural Network

devised for this task must model the complete tomographic
reconstruction algorithm. We showed that this is possible for
parallel and fan-beam geometry in publication [4]. Recently
it has been shown, that such a strategy, incorporating known
operators like backprojection instead of relying on a hand-
crafted network structure decreases maximal error bounds [3]].
An extension of our architecture was subsequently presented in
a joint work by Hammernik et al. [6] using a variational network
performing the non-linear filtering, based on compressed
sensing theory.

Despite promising performance, the previously proposed
methods are limited to parallel and fan-beam geometries and
rather small network sizes. Since practically all available CT
scanners acquire projection data in cone-beam geometry, the
applicability of these methods to real-world problems and, thus,
their attractiveness, is greatly reduced.

In this paper, we extend our method to the clinically relevant
cone-beam geometry. We express the widely used Feldkamp-
Davis-Kress (FDK) algorithm in terms of a neural network. To
this end, we introduce an efficient, differentiable cone-beam
back-projection layer. This enables an end-to-end learning of
various neural network architectures for reconstruction which
refers to the potential for joint optimization of correction steps
both in volume and in projection domain. Using this a whole
new class of reconstruction algorithms, replacing heuristic
compensation methods in the reconstruction pipeline with data-
driven solutions becomes available. Additionally, because of
the strong link to reconstruction theory, we benefit from very
good initializations and keep the interpretation of the original
algorithm. We apply our method to a simulated limited angle
reconstruction problem, based on the Low-Dose CT Grand
Challenge data. Our Tensorflow GPU implementation of the
proposed method and example data can be found at:
https://github.com/maOho/Deep-Learning-Cone-Beam-CT.

This work is structured as follows: in Section [[I, we review
deep learning applied to CBCT reconstruction and briefly
mention analytic approaches that address the limited angle
problem. Section introduces the proposed method where
we develop a reconstruction network for the parallel beam
geometry. We extended this approach first to fan-beam and then
to the clinically relevant cone-beam geometry. The evaluation
is carried out in Section [[V] after the dataset and evaluation
metrics are outlined. The paper is concluded in Section
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II. RELATED WORK

Wang [3] argues that learning-based approaches may be
particularly promising for applications that cannot be solved
analytically as they lack proper mathematical formulation. This
assumption seems justified when considering previous work
on machine learning in CBCT reconstruction.

Our method considers mapping an analytic reconstruction
pipeline to a neural network as a one-to-one correspondence.
As a consequence prior to training, our networks represent an
implementation of this pipeline. This presents the advantage,
that they can be adapted to specific settings violating the
requirements for exact reconstruction by optimization. Because
the learned steps still correspond to their analytic counterparts,
they can be readily interpreted after training. We are not aware
of a similar method to adapt analytic algorithms simultaneously
in projection and volume domain to training data.

Claus et al. [7] devise a method that addresses metal artifact
reduction. They train a neural network that artificially removes
metal implants from projection images via inpainting to reduce
metal artifacts occurring during reconstruction.

Chengl et al. [8] present a deep learning method that predicts
detailed versions of crudely reconstructed volumes to speed up
convergence in iterative reconstruction algorithms, a method
referred to as leapfrogging. In this approach, the output of
the neural network is further refined using traditional iterative
reconstruction methods.

Kang et al. [9] applied neural networks to a denoising task.
Their network operates on the contourlet domain and predicts
noise coefficients, which are subsequently subtracted from
the original image to receive a denoised image. They present
evidence that learning a mapping from a corrupted image to a
corruption map is more stable than directly learning a mapping
to an uncorrupted image.

This approach showed great promise for denoising low dose
images, by scoring the second place in the 2016 NIH-AAPM-
Mayo Clinic Low Dose CT Grand Challenge”. Since then,
additional denoising approaches have been proposed that either
use a different network architecture [10]] or introduce a novel
perceptual loss function [[L1].

Apart from the denoising problem, neural networks have
been applied to sparse view reconstruction [12] [13] applying
variants of the popular U-net architecture [14] and the idea of
learning the difference to an uncorrupted image.

Within this manuscript, we are most concerned with chal-
lenges of CBCT reconstruction in the limited angle case where
data is acquired with an insufficient angular coverage of 180°.
In the same context, Gu et al. [[15]] trained a neural network to
remove artifacts as a post reconstruction method. They use a U-
net type architecture and perform training in the wavelet domain.
Similar to Kang et al. [9], they report that the prediction of
artifact images is more stable compared to directly estimating
a restored image.

Floyd [16] presented a method to learn the reconstruction
filter of an analytic reconstruction algorithm. While this similar
to our work, it is not as general, as our framework allows to
learn every other possible step in a reconstruction algorithm
jointly in projection and volume domain. Another algorithm

capable of learning filters was presented by Pelt et al. [17] [[18].
They learn a non-linear combination of multiple reconstructions.
Within the framework proposed in our work, any general
element of a single reconstruction can be learned. Their
method increases the complexity of the algorithm proportional
to the number of reconstructions used, while the test-time
complexity of our method is the same as for analytic algorithms.
Additionally, our methods can be extended to enable learning
any step of the reconstruction algorithm.

Another approach to apply deep learning to the recon-
struction problem uses neural networks to learn optimization
methods. Examples for this strategy are given by [19]], [20] and
[21]. A general downside of those methods is their iterative
solution that renders them computationally costly.

An alternative is unrolling an iterative algorithm to a fixed
N-step iterative algorithm [22], [23], [24]. However, the
complexity of such an algorithm, while being fixed is still
much higher than the complexity of analytical algorithms our
method is focussed on.

Finally, many traditional approaches to the limited angle
problem exist. Noo et al. [25] devised a special purpose
reconstruction formula which is capable of exact reconstruction
but is limited to a reconstruction within a small region of
interest. Riel3 et al. [26] proposed a heuristic combination of
filters that are applied in projection and reconstruction domain,
respectively. Their method modifies the well known short scan
weights by Parker et al. [27] to cope with the missing rays in
projection domain. Subsequently, they apply a bilateral filter to
remove remaining streak artifacts in the reconstructed volume.
Recently, both strategies have been combined by Schifer et
al. [28] to yield a solution capable of an exact reconstruction
in a region of interest, which additionally benefits from the
heuristic compensation weights outside this region. They argue
that a weakness of the heuristic weights lies in their non-smooth
transitions. They compensate for this by means of apodization.
Another well known approach to limited angle reconstruction
are regularized iterative algorithms. An algorithm specifically
designed for limited angle tomography was presented by
Huang et al. [29]]. Downsides of these approaches is their high
computational complexity and their assumption of a piecewise
constant object.

III. METHODOLOGY

In Section [[II-A] we convert the filtered back-projection
(FBP) algorithm in parallel-beam geometry to a neural network.
Subsequently, Section shows the extension to fan-beam
geometry. Next, we present our new extension to cone-beam
geometry in Section by introducing the FDK algorithm
and its mapping to a neural network. Finally, in Section
we discuss regularization methods suitable for our model.

A. Parallel-beam geometry

We start our derivation using a formulation of a reconstruc-
tion as a least-squares minimization problem of the following
objective function [30]:

1
L(f) = 5 || Af = pl3, M
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Fig. 1: Parallel-beam architecture. Green nodes represent
intermediate results in volume domain, red nodes intermediate
results in projection domain. The color of arrows denotes
weight sharing.

where p € RMF denotes the projection data, A € RV*M-P

denotes the forward projection model, f € R" denotes the
reconstruction for which the function is minimized, M the
number of pixels in one projection, P the number of projections,
and N the number of pixels/voxels in the reconstructed image.
Two solutions to the problem are found considering the gradient
with respect to f:
SL(f) )
5t 2)
Following the negative gradient direction gives rise to iterative
solution schemes. A direct so}ution is found at the point, where
SL(F)

f=AT(AAT) 1p.

= AT(Af —p).

the gradient vanishes

3)

In parallel-beam geometry, the operator Ay, is also known
as the Radon transform. Its adjoint Ag;) is readily available
as the back-projection operator. These operators are also the
basis for analytical reconstruction, which can be expressed in
continuous domain as:

f(.’L', y) = /0 p(u7 9) * h(u)‘u:z cos O+y sin Gdev (4)

where x,y denote a coordinate of a point in the reconstruction,
i.e. one index in f. Thus, we can rewrite this equation using
the operator notation from before to:

f=A} Cp, (5)

where C denotes the convolution of the projection data p(u, 6)
with the discrete ramp filter h(u). This corresponds to the
(AAT)~! in the general case of Eq. |3l Note that for this
algorithm it is sufficient to acquire data with an angular
coverage of 180°, since p(u,0) = p(—u, 6 + 180°) [30] with
u denoting the spatial coordinate of the projection data.

The mapping to a neural network is straightforward by
specifying layers that implement the operators Alﬂ) and C.
Operator C is readily implemented as a convolutional layer with
a single one-dimensional filter with its size equal to the spatial
dimension of the projection. Note that unlike conventional
filters employed in deep learning, the ramp filter has an
infinite impulse response. This means that it is conventionally
implemented as a filter with the same extent as a single acquired
projection. Consequently, this operation is usually implemented
in Fourier rather than in spatial domain.

In theory, Agj can easily be mapped to a neural network
as it represents a matrix multiplication and, therefore, can be
implemented as a fully connected layer. In terms of a neural
network, the operation of such a layer can be expressed as:

(6)

where W denotes the matrix multiplication with the weights.
For the reconstruction, the vector x;4; can be regarded as the
reconstruction f, while the input x; is the filtered projection
data Cp. However, as known from iterative reconstruction,
the number of weights of this matrix is N - M - P which
can easily amount to several terabytes for modest problem
sizes. This renders a straightforward implementation as fully
connected layer infeasible. However, we can adopt a solution
similar to iterative reconstruction. To this end, we construct a
new back-projection layer without adjustable parameters. This
new layer can compute its forward pass identifying W with
the computation of Apr. To be able to adjust parameters of
the neural network in projection domain, we have to calculate
the gradient of this layer with respect to its inputs. Using
backpropagation, the derivative of a fully connected layer with
respect to its inputs is computed as:

Xi+1 = WX[ s

T
e _1 =W e,

(7

where e; denotes the intermediate term that is commonly known
as the error in deep learning. Similar to the derivation of the
forward pass, we replace W with the back-projection operation
Ag;, and obtain:

(®)

This result enables the back-projection layer to efficiently
calculate its forward and backward pass as fixed function
without ever storing the complete matrix in memory.

For the reconstruction of attenuation values, it is a general
requirement that solutions are non-negative, as negative values
would indicate a source embedded in the imaged object.
However, many artifacts in CT imaging can cause negative
attenuation values in the reconstruction. It is sensible to enforce
this constraint in a neural network model of reconstruction. The
non-negativity constraint f; > 0V f; € f on the reconstruction
can be enforced as:

€ 1= (Ag{))Tel = Apbel .

f = max(0,f). )

In deep learning, this constraint is known as the Rectified
Linear Unit (ReLU) activation function. Since we do not expect
negative values for any reconstruction, ReLU can be employed
without loss of generality. The resulting network architecture
is displayed in Figure [T}

B. Fan-beam geometry

The first generation of CT imaging system acquired data in
parallel-beam geometry. This generation of scanners required
translating the source only allowing the measurement of a single
line at each position, which is a very time consuming procedure.
Thus, the following generation of systems introduced an
acquisition of whole detector rows at once in a fan-beam
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Fig. 2: Fan-beam architecture. Green nodes represent intermediate results in volume domain, red nodes intermediate results in

projection domain. The color of arrows denotes weight sharing.

geometry. This requires a change of variables in the parallel-
beam FBP formula. The non-trivial Jacobian of the change
in variables introduces different operators. These consist of
an element-wise cosine weighting of the projection data and
a change of the back-projection operator to the fan-beam
geometry. Additionally a distance weight becomes necessary
which is conveniently incorporated in the back-projection
operator. In operator notation, the FBP algorithm for fan-beam
geometry can be expressed as:

X = AfIJ}; chosp ) (10)

where W, denotes the pixel-wise independent weighting
of the projection data with cosine weights. Thus W is a
diagonal matrix and CW s corresponds to (AAT)~! in the
general case of Eq. 3] The resulting network architecture is
displayed in Figure [2] Equation [I0]is only valid for a full 360°
angular coverage, a trajectory that is over-complete as every line
through the object is measured twice. The minimal complete
angular coverage in fan-beam geometry consists of 180° + 6,
where 6 denotes the fan-angle. However, this trajectory captures
some redundant measurements. If not properly addressed,
they lead to severe artifacts in the reconstructed image. The
standard solution to this problem in analytic reconstruction is to
weigh the data appropriately, e. g. using the scheme proposed
by Parker et al. [27]. We augment equation to include
redundancy weights, denoted as Wieq:

(1)

The mapping of this reconstruction algorithm to a neural
network requires a layer representing these element-wise
weightings using a diagonal matrix. This enables us to
immediately derive the backward-pass of this operation as
a multiplication of the error with the same matrix because for
diagonal matrices W = W7 Due to the diagonal structure,
the number of weights is M - P suggesting that these weights
can be stored in memory at all times and, thus, be learned. In
order to do this we have to provide the gradient with respect
to the weights WL of this layer. Applying this to the well

eI
known matrix formulation of a fully connected layer, it follows:

X = Ag CWredWcosp .

5Wl

=eX|_1, (12)

0wy

where e; denotes the error with respect to this layer and x;_;
denotes the activation of the layer prior to layer [. This shows
that the update is again an element-wise multiplication.

Since the convolution with the Ramp filter remains com-
pletely unchanged, the last thing we need to construct is a
fan-beam back-projection layer. This can be achieved once more
by calculating the fan-beam back-projection in the forward
pass of the layer and using fan-beam projection to calculate
the derivatives with respect to the input. The fan-beam back-
projection operator A£ usually includes the distance weighting
resulting from the change of variables:

2
D

Drrsn(3—9)) 4

where D denotes the focal length, r, ¢ denote the coordinates
of the point on the detector to reconstruct, and 3 denotes the
current projection angle of the system. The incorporation of
this distance weights in the back-projector is straightforward.
However, their inclusion means that they have to be also
considered during the backward pass of the network when
calculating Ag,. This becomes a distance weighted forward
projection that is different from iterative algorithms and can
be addressed with a matched projection strategy.

C. Cone-beam geometry

We now turn to the problem of extending the previously
presented methods to the problem of reconstruction from
projections acquired in the clinically relevant cone-beam
geometry. This problem is substantially more challenging
than reconstruction from parallel or fan-beam projections.
The reason is that the dimensionality of the problem is
drastically increased as considering cone-beam geometry is
associated with a transition to a 3-D, rather than a 2-D,
reconstruction problem. A broad range of 3-D scan trajectories
and a multitude of algorithms capable of exact reconstruction
and many approximative methods exist. The choice between
these algorithms is constrained by the requirements on the
acquisition trajectory of source and detector.

We focus on incomplete circular trajectories as they are the
de facto standard in flat-panel CBCT applications. A popular
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Fig. 3: Short scan cone-beam architecture. Green nodes represent intermediate results in volume domain, red nodes intermediate
results in projection domain. The color of arrows denotes weight sharing.

algorithm for the reconstruction of those is the FDK algorithm.
This algorithm extends the fan-beam algorithm by assuming
the object to be invariant in z-direction. It can be expressed
conveniently in operator notation and reads:

f =A% CoWeos,p - (14)

Here W,,,, denotes a two-dimensional cosine weighting of
the projection data p(f, u,v) according to the angle between
the current and the principal ray. For a particular detector pixel,
the weight is computed as:

D

where D again denotes the focal length, while 4 and o
denote the coordinates of the considered detector pixel in
horizontal and vertical direction, respectively. Weights obtained
in this way can be incorporated in our new cone-beam
reconstruction network by using yet another weighting layer.
The convolution operator C still denotes a one-dimensional
row-wise convolution of the data along the u-direction with
the ramp-filter h(u).

Equation |14] also contains a new operator Az;) which is the
three-dimensional back-projection with a distance weighting.
The transpose of this back-projection is, again, the cone-beam
projection operator. With its help, we can map operator A% to
a layer in a neural network by computing the cone-beam back-
projection in the forward-pass of the network and using the
projection to calculate the derivatives with respect to the input.
However, we need to incorporate the distance weights from the
change of coordinates, similar to the fan-beam back-projection
layer. These can be expressed as:

D \2

(D — 5) ’
where s denotes the distance of the reconstruction domain
point to the detector plane. To effectively address this issue,
we propose to implement a matched projector A.y.

It is known that data acquired on a circular source and
detector trajectory does not satisfy Tuy’s condition and is,
hence, incomplete. Still, the heuristic adaptation of Parker
weights [27] is a popular choice. We follow the literature and
extend the short-scan weights to cone beam geometry:

f= Az; C2DWredZDWCOSZDp .

15)

(16)

7)

We display our resulting network architecture in Figure [3]

D. Regularization

Pre-training enabled the first successful deep learning models.
Since then, new methods like the ReLLU activation function
and transfer-learning have made pre-training less common.
However, since our models are constructed after one-to-one
correspondences of analytical algorithms we can initialize our
layers with the exact solutions given by reconstruction theory.
This yields neural networks capable of performing analytical
reconstruction after they have been initialized. This provides a
very strong starting point for learning data-optimal algorithms
which cannot be formulated analytically.

IV. EVALUATION

We apply our model to the problem of limited angle
tomography. In Section [[V-Al we describe the data that we
have used for our experiments. In Section [[V-B| we focus on
the implementation of our model and list its hyperparameters.
Then, in Section we briefly discuss the evaluation metrics
before we show our results in Section [V-El

A. Data

For our experiments, we use data that was released as part of
the Low Dose CT Grand Challenge. As the provided projection
data was acquired using a helix trajectory, we cannot use it for
the circular trajectory. Instead, we perform a forward projection
of the provided reference volumes that were reconstructed from
the full dose projections using a slice thickness of 1 mm. For the
forward projection, we perform 360 projections onto a detector
of 720 pixels width and 880 pixels height and reconstruct
cubic volumes of 5122 voxels. For our cross-validation, we
calculate reconstructions with a reduced resolution of 2563
voxels. The size of each detector pixel is 1 x 1 mm? and the
angular increment between every projection is 1°. The distance
between radiation source and detector is 1200 mm. Training
took approximately five hours for each fold on a machine
equipped with an NVIDIA GTX 1080, an Intel Xeon E5-1630
v3 @ 3.70GHz and 64 Gb RAM. The volume was placed in
the origin of the world coordinate system which also represents
the axis of rotation. We simulate the limited angle problem by
limiting the angular range to 180°.
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Fig. 4: Figures [4al and 4e| show examples of ground truth slices. Using only half of the projections causes loss of mass as
shown in Figures b and if] Our trained model can compensate for the loss of mass. The result is shown in Figures [4d] and #h]
A similar result is achieved by the heuristic compensation weights proposed by Schifer et. al [26] (Figures [4c| and .

B. Implementation Details

We chose to implement the model in Tensorflow [31]]
which, except for the back-projection layer, readily provides
all required functionality. We implemented the back-projection
layer as a custom Tensorflow operation and use CUDA to speed
up the computation. The implementation relies on a formulation
using projection matrices, which is the conventional format
for flat-panel cone-beam CT data. As detailed in section [[II-C|
the gradient of the back-projection operation can be calculated
using the projection operator A, with incorporated distance
weights. To realize this, we decided to implement a matched
projector, calculating the weights of the forward projection
for every voxel and distributing the error according to those.
Hence, we have an exact implementation of the transpose of
AT

For training the network, the loss L of the network output f,,
(the reconstructed volume) needs to be computed with respect
to the ground truth f,.. f, follows by feeding all 360 projection
images through a reference network that has been initialized
using the analytic weights of the FDK algorithm. Using the
Euclidean loss function we receive:

L=|f —f.l5- (18)

We use L to train the parameters of the redundancy weighting
layer since these are the only adjustable parameters able to
compensate for the missing data. For the parameter update, we
use a simple gradient descent scheme with a learning rate of
0.2 x 10~8. We deliberately set the learning rate for the filter
to 0 as we do not expect dominant changes.

We perform a leave-one-out cross-validation on this data
set, using each volume once for evaluation. To determine the
point for early stopping, for each fold we randomly select one
dataset as validation set and use the remaining eight volumes

reference f,

200 300
width [px]

limited angle f;

our model f,,

00 i ')
(a) 0 100 200 300 100 500

(b)

Fig. 5: Figure shows the line along which the intensity
profile (figure [5b) has been computed in red. Green: Region
of interest that has been used to compute SSIM and PSNR
(Tables [I] and [I). Figure [5b] depicts the intensity profiles along
the line shown in Figure @

for training. The trained algorithm is hereby limited to this
specific acquisition geometry. In Section [[V-E] we report the
test results for each fold of this cross-validation.

C. Evaluation Metrics

Two common metrics to predict the perceived quality of
images are structural similarity (SSIM) [32] and peak signal-
to-noise ratio (PSNR). SSIM combines a luminance measure, a
contrast measure and a structure measure. It is computed over
a multi-scale representation of the volumes and is averaged
to yield a final score. We used an implementation of SSIM
that matches the description of Wang et al. [32]]. Therefore,
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SSIM PSNR
Parker Proposed U-net wTV Parker Proposed U-net wTV
fold 1 0.675 0.770 0.539 0582 | 22.54dB 2845dB 2626dB  33.12 dB
fold 2 0.652 0.736 0.548 0.555 | 2537dB  29.78dB 2784 dB 3524 dB
fold 3 0.637 0.704 0.490 0.524 | 23.79dB  27.10dB 19.18dB  30.03 dB
fold 4 0.683 0.795 0572 0584 | 19.83dB 2574dB 2322dB 30.33 dB
fold 5 0.611 0.691 0.604 0.537 | 26.18dB  30.83dB 30.63dB  36.59 dB
fold 6 0.639 0.769 0.482 0.551 | 2352dB  31.11dB  26.75dB  34.05 dB
fold 7 0.676 0.789 0.579 0.597 | 20.66 dB 2728 dB 23.40dB 30.68 dB
fold 8 0.679 0.738 0.505 0.557 | 20.88dB 2893dB 22.61dB 3243 dB
fold 9 0.637 0.744 0.680 0.565 | 22.64dB 3128 dB 26.64 dB  32.18 dB
fold 10 | 0.630 0.727 0.645 0.530 | 2632dB 3526dB 2676 dB  35.32 dB
average | 0.652 0.746 0.564 0.558 | 23.17dB  29.57dB 2533dB  33.00 dB

TABLE I: SSIM and PSNR for the reconstruction using Parker weights, the proposed approach, a U-net based reconstruction [[15],
and the iterative wTV method [29] for each fold of a 10-fold cross validation.

we use Gaussian weights instead of sharp windows and set the
algorithmic parameters accordingly. The PSNR is defined as

max (f, © £,
PSNR(f,. £,,) = 1010g,o (Hf(_fug)) a9
r m||2

where © denotes element-wise multiplication. We compute
both evaluation measures over a volumetric region of interest,

in order to preserve the sensitivity of our evaluation measures.

This is needed since only parts of the volume are affected by
limited angle artifacts. The selected 3D region intersecting a
volume slice is shown in Figure [5a] We report results for two
other methods on the same data and geometry.

D. Reference methods

We compare our method to an iterative reconstruction method
proposed by Huang et al. [29]]. We performed 200 iterations
of the weighted total variation (WTV) method using the same
parameters as in [29]]. Additionally, we report results of a
method using a multi-resolution network that has previously
been used as a baseline in [[15]. Similar to [15]], we trained
the U-net on individual slices instead of volumes. The U-net
method is optimized using the Adam optimizer with a learning
rate of 1073 the decay for the first moment estimate 3; = 0.9
, the decay for the second moment estimate 35 = 0.999 and
e=10"8.

E. Results

It turns out that the training process is very stable without
any further adjustments. This has multiple reasons. Our model
is very wide, but quite shallow enabling easy learning compared
to deep architectures which suffer from the vanishing gradient
effect. Furthermore, our weighting layers are very easy to learn
because the adjustable parameters are disentangled from each
other.

The impact of adjusting the Parker weights by training
as described in Section is readily visible in Figure
Figure [5b] shows that the loss of mass, caused by missing
data, is effectively compensated. However, Figures [4d] and [4h]
also show that streak artifacts are still visible which are not
compensated by this basic architecture.

In order to investigate the training results in greater depth,
we show the learned weights in Figure [8a] and compare them
to the analytic parker weights [27] in Figure [8b] Note that

SSIM PSNR
Parker 0.849 27.07dB
Parker + noise 0.628 26.13dB
Schifer 0.865 33.34dB
Schiifer + noise 0.573 29.37dB
Learned 0.886 33.17dB
Learned + noise | 0.604 29.67dB

TABLE II: SSIM and PSNR in comparison to analytic Parker
weights and weights proposed by Schifer et. al [28]]. Additional
noise has been added to the projections with a standard
deviation of 0.5 % of the maximum attenuation.

we have smoothed the learned weights with a gaussian filter
(o = 3) for illustration purposes. In addition, we show the
heuristic weights proposed by Riel} et. al [26] (Figure that
have been specifically designed for limited angle reconstruction.
This comparison shows that our method learned similar boosted
regions as shown in Figure Also note that the decay that
has been learned at the begin of the scan between 700 px
and 800 px as well as between 0px and 100 px at the end
of the scan (see Figure [8a) has recently been proposed as an
improvement over these heuristic weights by Schifer et al. [28]].
This illustrates that our neural network model is not as opaque
as conventional models. Because every fundamental stage of
the architecture corresponds to a well understood stage of the
analytic reconstruction, practitioners can readily interpret them.

In Figure @ we compare the results of a reconstruction
using the weights proposed by Schifer et. al (Figures [4c| and
Hg) with the reconstruction results using our trained weights
(Figures [4d) and [4h)). The results are quite similar from a visual
point of view. To investigate this in greater depth, we also
compare the SSIM and PSNR for both weights (Table [II)).
These results strengthen the assumption that the heuristic and
learned weightsT perform similar. In addition, they show that
the learned weights perform better than the heuristic weights in
a noisy setting in terms of PSNR. However, the SSIM metric
favours the reconstruction result using Parker weights, despite
the prominent shading artifact. A reconstruction with noise is
shown in Figure

Table [[] compares the SSIM and PSNR of the limited angle
reconstruction using Parker weights, the iterative method and
the U-net based method with the reconstruction using our
trained model. While the wTV method performs best in terms
of PSNR, the proposed method generally performs better
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(b)

(d)

Fig. 6: Exemplary results from the cross-validation: (a) Groundtruth, (b) result using the proposed method, (c) using U-net

based approach, (d) using the wTV method.

(b)

(d)

Fig. 7: To show the robustness of the learned weights to noise, we added Gaussian noise to the projection data. (a) and (c) show
the reconstruction results using Parker weights while (b) and (d) show the reconstruction results using the learned weights.

in terms of SSIM. The reason for this is that the strong
smoothing introduced by the total variation prior is strongly
penalized by SSIM while it is less well reflected in PSNR. The
reconstructions using the U-net method suffers from spurious
objects it adds to the reconstruction, as seen on the left side
of [6c| as well as less obvious mistakes like reconstructed object
boundaries that are reconstructed sharply but with an incorrect
curvature.

V. DISCUSSION

In our method, we propose to learn reconstruction algorithms
for limited angle data for parallel, fan-, and cone-beam
projection geometries. The network architectures are derived
from analytical reconstruction formulas. In fact, the pre-trained

networks compute exactly the analytical reconstruction formula.

By training, we adapt these algorithms to cases for which no
analytical closed-form solution is known. The algorithm itself,
however, is still of the same class and test-time complexity
as the original reconstruction formula. Therefore, the degrees
of freedom are limited and we are able to map the trained
network again into an analytical reconstruction formula. Thus,
we are able to interpret the learned adaptation in the context
of classical analytic reconstruction theory. In our results, we
observe that the learned weights mimic heuristic extensions
of classical reconstruction formulas such as the Riel}’ weights
and their extension by Schifer at al. This is in particular
interesting as analytical reconstruction formulas are typically
derived in continuous form. The implementation in a discrete
computer system typically causes additional efforts in order
to handle the discretization correctly. As such the ramp filter
needs to be implemented according to the Ram-Lak convolver

and appropriate apodization is required. For iterative methods,
these problems do not emerge as the complete reconstruction
formula is derived in discrete form. In our method, we observe
that the network adapts to the discrete nature of the problem
automatically. We believe that this is the result of our solution
being optimal in an L2-sense with respect to the given training
data. In conclusion our method enables to improve analytic
algorithms in a data-driven fashion by adapting to specific
scenarios while not relying on heuristics and staying very close
to the properties of analytic algorithms.

At present, we only investigated the FDK algorithm for
circular trajectories. However, the presented method could
be easily applied to any other trajectory and reconstruction
formula. In particular, we deem the investigation of exact
reconstruction methods as Defrise-Clack[33]] and Katsevich-
type reconstruction formulas [34] promising as the proposed
approach could mend problems as unused data or extend the
formulas to new reconstruction orbits easily.

Many calibration and physical correction steps such as scatter
correction and beam-hardening correction involve operations
that could be easily embedded in a neural network as data
correction steps de-coupled from back-projection. Most of these
correction methods estimate each correction independently
and are not able to model inter-dependencies. Our method
can be used to find optimal end-to-end learned parameters
for all steps jointly in projection and volume domain. In our
framework, we could reuse the idea of pre-training the net using
a previous calibration and perform end-to-end training to es-
tablish interrelations between the different correction steps. Of
course, our method can also be combined with reconstruction-
domain non-linear neural-network-based processing, e.g. the
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Fig. 8: Presentation of weights: (a) weights that have been learned by our model, (b) Parker weights, (c) weights as proposed
by RieB et al. [26] without Gaussian smoothing, (d) smooth compensation weights proposed by Schiifer et al. [28].

method of Kang et al. [13], which demonstrated that noise
artifacts are easier removed in wavelet domain. Learning
those compensation steps provides a basis to replace heuristic
algorithms with end-to-end optimized data-optimal solutions.
There is direct similarity of our approach to iterative
algorithms. The key difference to those methods is that our
neural network does not use these equations to iteratively
compute a single solution for f. Instead, it iteratively learns
parameters that describe the optimized mapping from p to f
in a single step. Since we fixed the back-projection layer, the
only adjustable parameters in this basic network structure are
the weights of the projection-domain layers. To learn more
flexible mappings, we have to introduce additional layers that
provide complimentary degrees of freedom. This reveals a
second difference to iterative algorithms. The derivation of
back-projection as a layer solely uses the linearity of the
projection transform. This means that the whole transform
can include arbitrary differentiable non-linearities and still use
backpropagation to compute the necessary derivatives.

There are different approaches to implement A and A”.

Typically, the forward projector is implemented pixel-driven
and the back-projector voxel-driven for optimized execution
time. As this does not correspond to the correct gradient
for an iterative procedure, we call such an implementation
unmatched, as opposed to the matched projector. Thus, we
have the choice to perform the unmatched projection and apply
the distance weights or implement the matched projector as
the exact transpose of the forward operation. The unmatched
projector computes the per-pixel value as the integral over
the ray connecting the radiation source with that pixel. The
main advantage of this implementation is, that it benefits from
the texture memory in modern GPUs that provides hardware
accelerated bilinear and trilinar interpolation. However, one
still has to apply the distance weighting. It is unclear whether
it is beneficial to implement the operator A as the exact
transpose of AT or as direct forward projection. This has been
analyzed extensively in iterative reconstruction. An extensive
analysis on the implications of such a choice was conducted
by Zeng [35]]. He showed that an unmatched projector solves a
different optimization problem. However, in real datasets other
effects such as noise and beam-hardening dominate the image
quality and the choice of matched or unmatched projectors

is not critical. Contrary to intuition, unmatched projectors
have been shown to increase convergence speed in some cases.
Mathematically our formulation is very similar. Thus, we expect
these observations to hold for the back-projection layer, too.

Due to the non-convexity of the underlying optimization
problem, well adapted regularization strategies are a key factor
for a successful application of deep learning algorithms. Big
advances have been gained by pre-training [36], Dropout
and Batch-normalization [38]. The motivation behind Dropout
is to promote independent features. However, the independence
assumption does not apply to the large scale regression
problems of reconstruction. Both the weights and the elements
of the filter can be regarded as discrete versions of smooth
functions. Therefore, randomly setting elements to zero will
only introduce a residual error without enforcing any sensible
prior knowledge. Thus, we found Dropout unsuitable for
our models. The internal covariate shift, which occurs with
typical convolutional neural networks, also does not apply to
our layers since they preserve a specific scale representing
attenuation values. Thus, batch normalisation is also not
appropriate for our models. Note that these regularization
methods are not by definition useless for the application of
deep learning to reconstruction. However, they only make
sense if an intermediate representation using learned features
is constructed. This is not the case in our model.

VI. CONCLUSION

We propose a deep learning method for cone-beam recon-
struction, enabling joint learning of compensation steps in
projection and volume domain. This is achieved by mapping
the popular FDK algorithm to a neural network. Since the
straightforward implementation is impossible, we introduce
a novel cone-beam back-projection layer. We show that the
derivative with respect to the inputs can be calculated efficiently
using a weighted projection. This enables to expand current
architectures only acting as post-processing methods in volume
domain to also include correction in projection domain. Many
well researched artifacts in CT are typically accounted for in
projection domain. Examples for this are physical effects such
as beam hardening, scatter and metal artifacts. Other examples
include missing data problems such as truncation correction
or limited angle reconstruction.
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We applied our method to a limited angle problem. By
learning compensation weights we showed that we can correct

the

loss of mass typically caused by missing data. This

improvement comes at no additional computational effort since
we use the exact same operations as the analytical algorithm,
with different weights. For future work, we would like to
address the remaining streak artifacts, which are also caused by
the missing data. They could be compensated by an additional
non-linear filtering in volume domain.
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