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Abstract—Reconstruction algorithms for X-ray computed
tomography typically assume a monochromatic X-ray beam
and an energy independent attenuation coefficient of the
materials along the ray. However, the attenuation coefficient of
every material depends on energy, which leads to beam harde-
ning artifacts in the reconstructed images. Recently reference-
free algorithms for mono-material beam hardening artifact
reduction based on the epipolar consistency condition have
been introduced. These and reference-based algorithms apply a
univariate polynomial model to the measured intensities prior
to reconstruction. However consistency conditions reflect all
sources of measurement errors. Other sources of inconsistency,
notably truncation, may impact the model fitting and lead to
low-quality reconstructions in spite of higher consistency. This
work aims at avoiding such problems by imposing physically
plausible constraints on the compensation functions. We in-
troduce two necessary constraints on compensation functions
namely monotonicity and convexity over the range of observa-
tions. Subsequently, we reformulate the optimization problem
of polynomial models to yield only solutions obeying these
constraints. Our formulation presents the advantage of being
able to fit exactly all those functions, therefore not discarding
plausible solutions. We show that this problem, despite being
non-convex in the general case, is convex for the special case
of polynomials of degree three. A measured data experiment
is presented to demonstrate the effectiveness of our method.

I. INTRODUCTION

The combination of the polychromatic spectrum of X-ray
tubes and the energy dependence of the linear attenuation
coefficient causes a common problem in X-ray computed
tomography known as beam hardening. This typically degra-
des image quality by introducing artifacts such as negative
regions, cupping and streaks in reconstructions [1].

Conventionally the effect of beam hardening is compen-
sated by a combination of software approaches which use
reference measurements and methods optimizing the effective
X-ray spectrum. An important distinction between software
approaches is whether they assume a mono-material or a
multi-material model. A computationally efficient mono-
material method was presented by Kachelrieß et al. [2].
The approach introduces a polynomial compensation model
and constructs a linear optimization problem to estimate its
parameters using a reference measurement.

However, beam hardening introduces inconsistency in raw
projection data which can be used to estimate parameters,
even without any reference. New consistency conditions have
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{P : g(x,w) =
∑N
n=1 wnx

n , wn ∈ R}

{Pm : g(x,w) ∈ P ∧ g′(x) ≥ 0 ∀x ∈ [a, b] }

{g(x,w) ∈ Pm ∧ g′′(x,w) ≥ 0 ∀x ∈ [a, b] }

Proposed method

{g(x,w) ∈ P ∧ wn ≥ 0}

Figure 1: Venn diagramm of the different constraints.
[a, b] denotes the range of measured values of q.

been introduced for cone-beam data by Clackdoyle et al. [3],
Lesaint et al. [4] and Debbeler et al. [5]. Aichert et al.
provided an efficient flexible formulation of [5] in terms
of epipolar geometry known as the epipolar consistency
condition [6].

Recently, two reference-free beam hardening reduction
algorithms based on the epipolar consistency condition
and a univariate polynomal model have been presented by
Abdurahman et al. [7] and Würfl et al. [8]. The approach
by Würfl et al. uses the linearity of the Radon operator to
speed up the algorithm significantly by reformulating the
optimization problem on the Radon intermediate function.
Additionally, the authors propose to improve robustness to
other sources of inconsistency by requiring the coefficients
of the polynomials to be non-negative. This non-negativity
constraint on the coefficients is motivated by the observation
that it is a sufficient but not necessary condition for a
polynomial to be monotonously increasing.

We show that the requirement on the model functions
to be monotonously increasing can be restricted further by
considering the physics of X-ray attenuation by additionally
requiring the functions to be convex.

This is implicitly satisfied by requiring non-negativity of



the coefficients. However non-negativity of the coefficients is
too restrictive in the sense that it prohibits many physically
plausible solutions by not being a necessary condition.
We illustrate this situation in Fig. 1. In this work, we
present a new parametrization of polynomial functions which
is necessary and sufficient for monotonously increasing
polynomials with a monotonously increasing derivative over
the range of interest. This is also depicted in Fig. 1 as the set
of our proposed formulation is equal to the set of our proposed
constraint. Despite the fact that the original optimization
problem is convex the domain of the new parametrization
is in general not convex which renders optimization non-
convex. However we are able to show convexity for the
special, practically relevant case of a polynomial of degree
three.

II. METHODOLOGY

In section II-A we present physical constraints on our
model function. We construct a parametrization of polynomi-
als obeying these constraints in section II-B. Subsequently
we discuss optimization of this new parametrization in
section II-C.

A. Physical constraints on beam hardening reduction models

The log attenuation along a line in X-ray imaging is given
as:

q(L) = − ln

∫
S(L,E)e−

∫ ∞
0
µ(E,s+λl)dλdE , (1)

where S(E) is the normalized spectrum over energy E on the
line of integration L parametrized as s+ λl. Here s denotes
the source position and l the direction, while µ(E, r) denotes
the spatial distribution at position r of the energy-dependent
attenuation values along a line L. It is common to assume
we can decompose the energy dependence from the spatial
dependence. This allows us to reformulate Eq. (1) to:

q(r) = − ln

∫
S(E)e−p(r)ψ(E)dE , (2)

where p(r) denotes the mono-chromatic line-integral at
position r at some effective energy, while ψ(E) denotes the
energy dependence. In order to obtain p from measurements
q, the task is now to find the inverse to this function, which
we will denote as f . This is depicted in Fig. 2.

Physically plausible model functions have to be monoto-
nous and convex giving rise to the requirement:

f ′(q) > 0 ∧ f ′′(q) > 0 ∀ q ∈ [0, qmax] . (3)

B. Parametrization

We introduce a new parametrization of our polynomial by
extending a recently presented monotonic parametrization
by Murray et al. [9]. The goal of their method is to fit a
polynomial:

g(x,w) = w0 + w1x+ · · ·+ wdx
d , (4)

Figure 2: Illustration of the beam hardening effect.

where d denotes the degree of the polynomial, subject to the
constraint of being monotonous over a range [a, b]. They use
the fact that a polynomial of degree d = 2k is positive on
[a, b] if and only if it can be written as

ĝ(x, ŵ1, ŵ2) = ĝ1(x, ŵ1)
2+(x−a)(b−x)ĝ2(x, ŵ2)

2 , (5)

where k is a positive integer denoting the degrees of ĝ1 and
ĝ2. If instead the degree is d = 2k + 1 we have

ĝ(x, ŵ1, ŵ2) = (x−a)ĝ1(x, ŵ1)
2+(b−x)ĝ2(x, ŵ2)

2 . (6)

Integration over this non-negative polynomial ĝ(x, ŵ1, ŵ2)
yields:

g(x, ŵ) = δ + α

∫ x

0

ĝ(u, ŵ1, ŵ2)du . (7)

Note that all monotonic polynomials can be constructed
in this manner. Their method interprets the parameters of
polynomials ĝ1(x, ŵ1) and ĝ2(x, ŵ2) together with δ as a
set of new parameters:

ŵ = (ŵ1, ŵ2) ,

making them a reparametrization of g(x,w). By writing
polynomial multiplication and addition as convolution and
addition of coefficient vectors, an intermediate polynomial
with coefficients w̃ representing a non-negative polynomial
of degree d− 1 from ŵ can be calculated. If we e.g. pick
an uneven degree:

w̃ = (−a, 1)T ∗ (ŵ1 ∗ ŵ1) + (b,−1)T ∗ (ŵ2 ∗ ŵ2) ,

where ∗ denotes convolution. An integral over w̃ can be
computed according to:

w =

(
δ, αw̃0, α

w̃1

2
, · · · , α w̃d−1

d

)T
, (8)



where α controls if it is monotonously increasing or decrea-
sing, i.e. α = ±1.

We set α = 1 , since we only need increasing functions.
Additionally we require the second derivative to be non-
negative to satisfy Eq. (3). To this end we integrate a second
time:

f(x) =

∫ x

0

δ +

∫ u

0

ĝ(v, ŵ)dv du . (9)

We set the constant coefficient arising from the second
integration to zero because we expect zero attenuation for
zero traversed material. This new parametrization restricts
f(x) to be convex but does not enforce monotonicity. Because
the first integration yields a strictly positive polynomial over
the range of interest we only need to constrain the parameter
δ to be non-negative. This has a straightforward interpretation
since δ is simply the slope at x = 0. A negative slope here
cannot yield a sensible compensation polynomial. Because
we started from a necessary and sufficient condition of non-
negativity this new parametrization includes all polynomials
which meet our physical requirements of Eq. (3).

C. Optimization of the new parametrization

The new parametrization can be incorporated into any
scheme estimating a polynomial compensation model from
measurements using a general non-linear optimizer. The
parameters of the optimization are reparametrized and the
cost function is evaluated using the intermediate weights.

An important distinction of optimization problems is
whether they are convex and so any initial value will lead
to the same unique global minimum. When applying the
new parametrization this is in general not the case [9]. The
problem stems from the fact that the domain of all monotonic
polynomials f(x) is not convex. Therefore, even though the
unconstrained problem is convex, an optimizer can get stuck
in local minima which are on the boundaries of the restricted
domain.

In practice, a degree of d = 3 is often found to be sufficient
for measured data. If we restrict our attention to this special
case, we can investigate the function m3(δ, ŵ) which maps
the optimization parameters δ, ŵ1, ŵ2 to the parameters of
our polynomial model. In this case ŵ1 = ŵ1 and ŵ2 = ŵ2

and thus:

w = m3(δ, ŵ) =


0
δ

1
2

(
bŵ2

2 − aŵ2
1

)
1
6

(
ŵ2

1 − ŵ2
2

)
 . (10)

Since δ is constant, the shape of the domain depends only
on the intermediate weights ŵ1 and ŵ2. We visualize this
domain in Fig. 3. Examining the mapping in Eq. (10) we can
state that the square-function maps every value in the four
quadrants of ŵ to the same values in w. In addition, we can
determine that the boundaries of this domain are characterized
by lines produced when ŵ1 = 0 or ŵ2 = 0 respectively. The

lines are explicitly given as the left boundary:
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ŵ2

2 and

2 1 0 1 2
ŵ1
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Figure 3: Visualization: m3(δ, ŵ) in relevant dimensions.
The green lines form the treshold of the convex domain.
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Figure 4: Results of the unconstrained ECC2 algorithm using
measured data of an aluminum part (cf. fig 5). The estimated
compensation function shows undesired curvature and as a
consequence, the reconstruction is flawed.

the lower boundary:
(
−a2
1
6

)
ŵ2

1 . Because the expression of

the boundaries are lines which can also be seen graphically
in Fig. 3 the domain of optimization is actually convex for
the special case of a polynomial of degree three. This implies
that the whole optimization problem is convex.

D. Application to the ECC2 algorithm

The optimization problem for the reference-free beam
hardening reduction algorithm of reference [8] is given as

min
(
‖Aw‖22

)
s.t. : wTb = β; w ≥ 0 ∀w ∈ w ,

(11)
Where A denotes a measurement matrix which is constructed
using the epipolar consistency condition and b is a Vander-
monde vector which fixes a point p to a value q to deal
with the scale problem, inherent to the homogeneous least
squares problem. We modify this algorithm using our new
formulation to

min (‖Amd(δ, ŵ) ‖22) s.t. : md(δ, ŵ)Tb = β , δ > 0 .
(12)

We can solve this problem using a standard solver for
constrained convex optimization problems.
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Figure 5: Comparison of the effect of scatter reduction on
our modification of the ECC2 algorithm. Because the ECC2

algorithm does not preserve scale, we normalized every image
to a mean of one (Grayscale window: C/W = 0.53/1.91).

III. EXPERIMENTS

We present an experiment demonstrating our new method
on a measured dataset of an aluminum object additionally
affected by scatter.

The dataset shows severe scatter artifacts in addition to
beam hardening. This is reflected in additional inconsistency.
In Fig. 4 we present the result of the ECC2 algorithm without
a constraint on the polynomial:

The image-quality is severely impaired. The reason can
be observed from the estimated polynomial which is neither
monotonous nor convex.

We next compare the application of our proposed method
to both the original data and scatter reduced data. The scatter
reduction was performed using a beam stop array method.
The results are presented in Fig. 5.

In Fig. 5 we demonstrate, that our proposed constraint
makes the algorithm robust to additional sources of incon-
sistency. In addition we can see that the beam hardening
related artifacts are removed in both cases, while the
additional removal of scatter provides increased image quality
independent of this.

IV. CONCLUSION AND OUTLOOK

We have shown a new parametrization of polynomial
models which restricts the space of functions to a physically
plausible subset. Specifically we improve previous approaches
by precisely specifying the necessary conditions on these
functions and providing a method restricting the results to all
those functions which obey them. This can directly be used
to improve a number of algorithms relying on such a model.

Especially reference-free algorithms profit from our new
formulation, as their functions of merit may actually reflect
any other imaging problem in addition to beam hardening. We
applied our method to the ECC2 algorithm of Würfl et al.[8]
and showed the effectiveness of our method in dealing with
severe scatter conditions. Our algorithm is more complicated
in terms of implementation and looses the advantage of
presenting a convex optimization problem, if polynomials
higher than degree three are considered. However we have
not found this to be a practical limitation.

We will extend the physical constraints to multi-material
methods in future research using similar techniques. This is
more complicated since there is no unique definition of a
convex functional of two coupled variables. We expect multi-
material methods to benefit even more from such techniques
because the problem has more degrees of freedom.

Additionally we are interested in applying our method to
simultaneous multi-dimensional optimization of reference-
free geometric and physical compensation methods promising
to provide improved results for all those methods.
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