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Abstract Purpose: With the recent introduction of FAST (fully assisting
scanner technologies) by Siemens Healthineers (Erlangen, Germany), a pa-
tient surface model was introduced to the diagnostic imaging device market.
Such a patient representation can be used to automate and accelerate the
clinical imaging workflow, manage patient dose, and provide navigation assis-
tance for computed tomography diagnostic imaging. In addition to diagnostic
imaging, a patient surface model has also tremendous potential to simplify
interventional imaging. For example, if the anatomy of a patient was known,
a robotic angiography system could be automatically positioned such that the
organ of interest is positioned in the system’s iso-center offering a good and
flexible view on the underlying patient anatomy quickly and without any addi-
tional X-ray dose. Method: To enable such functionality in a clinical context
with sufficiently high accuracy, we present an extension of our previous pa-
tient surface model by adding internal anatomical landmarks associated with
certain (main) bones of the human skeleton, in particular the spine. We also
investigate different approaches for positioning of these landmarks employing
CT datasets with annotated internal landmarks as training data. The gen-
eral pipeline of our proposed method comprises the following steps: First, we
train an active shape model using an existing avatar database and segmented
CT surfaces. This stage also includes a gravity correction procedure, which
accounts for shape changes due to the fact that the avatar models were ob-
tained in standing position, while the CT data was acquired with patients in
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supine position. Second, we match the gravity-corrected avatar patient surface
models to surfaces segmented from the CT datasets. In the last step, we de-
rive the spatial relationships between the patient surface model and internal
anatomical landmarks. Result: We trained and evaluated our method using
cross-validation using 20 datasets, each containing 50 internal landmarks. We
further compared the performance of four different generalized linear mod-
els set ups to describe the positioning of the internal landmarks relative to
the patient surface. The best mean estimation error over all the landmarks
was achieved using lasso regression with a mean error of 12.19 ± 6.98 mm.
Conclusion: Considering that interventional X-ray imaging systems can have
detectors covering an area of about 200 mm × 266 mm (20 cm × 27 cm) at
iso-center, this accuracy is sufficient to facilitate automatic positioning of the
X-ray system.

Keywords Patient modelling · anatomical landmark · statistical shape
model · interventional · X-ray · imaging

1 Introduction

With better availability of affordable yet sufficiently accurate 3D RGB-D cam-
eras, estimating patient models in a diagnostic or interventional imaging set-
ting has become feasible. The availability of patient models now triggers new
research question such as how to use them to optimize existing workflows,
e.g., with respect to radiation safety or ease of use. For example, in the di-
agnostic environment, Singh et al. [16] demonstrated that a patient surface
model can be fitted to the patient ahead of CT scans using a RGB-D camera.
Knowing the position of the patient model in the table coordinate system, an
algorithm was designed to optimally adjust the table height and scanning area
and thus to automate and accelerate the diagnostic CT imaging workflow. In
the interventional environment, a patient surface model can, for example, be
used to improve X-ray dose management or to simplify system use. Johnson
et al. evaluated the accuracy of skin dose estimations using different patient
models [11]. The type of patient models varied from a stylized model (low-
est accuracy) to patient-specific models (highest accuracy). Their experiments
demonstrated that more accurate patient models led to better skin dose es-
timates. Furthermore, Bednarek et al. [5] showed that reliable, real-time skin
dose estimation results can be obtained by using an anthropomorphic patient
model and careful modeling of the underlying X-ray imaging physics. Patient
surface models were also employed to analyze breathing motion [20], or to es-
timate internal organ motion from surface motion [17]. Further interventional
applications include C-arm exposure control in knee imaging [12], navigation
assistance [4] in radiation therapy, and anatomy lessons using augmented re-
ality [6]. However, in these applications, most patient models were limited to
surface models providing information about the body shape only. No clini-
cally relevant internal anatomical objects have been included in these surface
models yet. Since organ positions do, however, correlate with human outer
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Fig. 1: The workflow of the proposed method during training (red) and testing
(blue) phase. The CT training and testing datasets are CT volumes in supine
position. The annotated CT datasets are CT volumes with annotated land-
mark position in supine position. The avatar surface database comprises 3D
surface meshes acquired in standing position.

shape, it should be possible to use surface models to obtain at least a priori
information about where certain organs are most likely to be found. To re-
liably embed internal organs into surface models, we propose to use internal
landmarks providing an internal frame of reference relative to which organ
positions are to be determined. A natural frame of reference is the spine. In
the related field of computer vision, deriving articulated models or skeletons
of a surface mesh is well studied. One of the most widely used methods to pre-
dict the skeleton of a 3D image (represented either as a surface model or as a
depth image) was proposed by Anguelov et al. [2]. At first, a template is fitted
to the target surface mesh using non-rigid mesh registration. Then, the fitted
template is partitioned and an expectation maximization algorithm is used to
determine the skeleton. Another approach to estimate the skeleton of a 3D
mesh was proposed by Au et al. [3]. This method gradually shrinks the surface
mesh using Laplacian based operations. Afterwards, the connectivity of the
contracted mesh is adjusted to obtain a final skeleton of the 3D mesh. While
these methods can be used for animation of 3D human models as, e.g., used in
movies, they fail to compute a realistic human skeleton when applied to patient
surface models. This is why we propose a new method for finding anatomical
relevant internal landmarks. We start with a surface model calculated based
on a patient’s height and weight and involves estimated relationships between
internal landmark positions relative to the outer body shape.

2 Materials and Methods

To extend the surface model with the internal landmarks, we use CT datasets
with annotated landmarks. The learning based approach has three main steps.
The workflow of the proposed method is shown in Fig. 1. In the training phase,
we learn a statistical shape model using the avatar database first. The shape
deformation due to the pose differences (avatars: standing vs. CT voxel vol-
umes: suppine position) was also taken into account in this step using CT train-
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Fig. 2: An illustration of the datasets used and associated step in the pipeline.

ing datasets. Second, for each CT volume, a corresponding trained shape model
(surface) was determined. Third, we learned the mapping function Mi(·) to
establish a relation between the tth model x̂t and the associated ith internal
landmark lt,i, such that

Mi = arg min
Mi

∑
t

‖lt,i −Mi(x̂t)‖22 (1)

The model x̂t was matched to the segmented CT surface xt using the
trained active shape model. We estimated the mapping function Mi(·) for
each landmark separately. Each step of the training pipeline employs different
types of datasets containing complementary anatomical information. Fig. 2
highlights the connection between used datasets and associated step in the
pipeline. First, to train the active shape model of the patient surface model,
an avatar database derived from the Civilian American and European Sur-
face Anthropometry Resource Project (CAESAR) [13] is used (surface shape,
height and weight). Second, 25 MRI datasets with patients’ height and weight
are used to calculated the deformation correction in a supervised manner.
Third, the SilverCorpus dataset of the Visceral datasets [19] (60 full body CT
datasets, without height and weight) is used to refine the deformation field
using an unsupervised method. Fourth, the Anatomy3 dataset of the Visceral
dataset [19] (20 full-body CT scans, with 50 associated internal landmarks
in each dataset, without height and weight) comprising internal landmarks is
used to train the internal landmark embedding network. For the evaluation ad-
ditional five CT datasets without internal landmarks, but with known height
and weight are used.

In the testing phase, a model is registered and fitted to the Anatomy3 CT
dataset using the trained shape model and gravity correction field. Using the
learned mapping functionMi(·) and fitted model, the position of the internal
landmark can be estimated. Then we can assess how close it is to the actual
landmark of this CT test dataset.
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2.1 Statistical Shape Model

We first trained a statistical shape model for the patient model using an avatar
database. All of the avatar surface models have been derived from a common
standard template. As a consequence, they all have the same number of ver-
tices. The vertices across the patient models share the same correspondences.
For example, a vertex positioned on the tip of the nose will have the same
index in each patient model. Using this database, a statistical shape model of
the surface model can be trained and expressed as

xt = x̄ + Dbt (2)

where x̄ denotes the mean surface model, matrix D denotes the modes of
variation, and the vector bt denotes the associated weighting vector of ground
truth surface mesh xt. However, this trained statistical shape model represents
a surface model of a person in standing pose. In most medical applications, the
patient is, however, in supine position. We proposed a shape correction term
for this pose difference, called gravity-deformation term G, in our previous
work [21].

x̂t = x̄ + (D + G)bt (3)

This term G was determined in a supervised manner. To this end, MRI data
with known gender, height, and weight was used.

In this work, we extended our previous approach to an unsupervised learn-
ing method as information about gender, height, and weight of the patient
is often not available in clinical datasets due to anonymization. Since we nei-
ther knew height and weight of the new (CT) datasets nor was the gravity-
deformation term available to us, we used an expectation maximization (EM)
algorithm to iteratively solve for them. Before starting with the EM scheme,
we first segmented the surface model of each CT dataset with unknown height
and weight information. In the E step, we estimated for each segmented CT
surface the shape parameter vector b with given modes of variation D and
fixed gravity-deformation term G. This estimation can be done by minimizing

bt = arg min
b
D (xt, x̄− (D + G)bt)

2
(4)

where D(·, ·) denotes the mean surface distance between the two meshes. In
the M step, we first calculated the deformation vector between the estimated
surface x̂t derived from the E step and the ground truth xt. This is an non-
rigid mesh registration problem and can be solved by estimating the system
matrix At ∈ RN×4×4

At = arg min
A
D(x′t,Ax̂′t)

2 + λ
∑

j∈N (i)

‖Ai −Aj‖22 (5)

where the scalar N denotes the number of datasets and vector x′t and x̂′t denote
the homogeneous coordinates of vector xt and x̂t, respectively. Afterwards, we
calculated the residual discrepancy vector r′t = Atx̂

′
t − x̂′t. This residual error
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is related to estimation errors of the gravity deformation field G. To arrive at
a better gravity deformation matrix, we can update this term by minimizing

δG = arg min
δG

∑
t

‖rt − δGbt‖22 (6)

This problem can be solved using SVD and we update the term G = G+α·δG
where α is the learning rate. To tackle this highly non-convex optimization
problem, we use G from the supervised method in our previous work as ini-
tialization and use the EM algorithm until convergence. The system matrix
A is obtained by calculating the derivative and using a BroydenFletcherGold-
farbShanno (BFGS) optimizer [9]. We set the learning rate α as 0.1.

2.2 Surface Model Registration and Fitting

To determine how to embed landmarks into our patient surface models, we
started by matching surface models to those CT volumes where landmarks
were present (Anatomy3 of Visceral). Since height and weight of our landmark-
annotated datasets were again unknown, we needed to find the best shape
parameter vector bt and associated rigid transformation Tt. This was accom-
plished by minimizing

bt, Tt = arg min
b,T
D (xt, T (x̄ + (D + G)b))

2
(7)

This optimization problem can be solved efficiently using alternating min-
imization. The challenge in estimating the transformation T is that the avail-
able CT may have less body coverage than our patient surface models. In
addition, the estimated transform should be robust such that two meshes
which are related by non-rigid deformation can be registered. To arrive at
such a transform, we used mesh feature descriptors and feature matching. To
establish correspondences between feature points robustly, we first sampled
the key points as proposed by Sahillioğlu et al. [15], such that the sampling
is almost uniform. In this way, we avoid accumulation of feature points in
high curvature regions when identifying key points. We used the LDSIFT [7]
feature descriptor to calculate the feature map for each key point. This descrip-
tor has shown robustness to non-rigid deformation between source and target
meshes. As the human body is symmetric, the feature matching potentially
finds false matches (mirrored at a patient’s longitudinal axis of symmetry).
To rule them out, we relied on the fact that for patients in prone position
the transformation T is primarily a translation with very limited rotation. In
our actual implementation, we divided the surface mesh into eight primary
districts using the principal axis of the mesh, and rejected any cross-district
matching. Due to the non-rigid deformation between the two meshes, we may,
however, still encounter ambiguous solutions for the rigid transformation. To
ensure robustness, we considered all feasible results using RANSAC [8], put
them into motion clusters, and used a mean shift algorithm to find the center
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of the biggest cluster. This cluster center is used as our motion estimation
Tt. After each iteration, the origin of the district’s coordinate system will be
updated accordingly. Knowing the transformation Tt, the weighting factor bt
can be estimated by minimizing

bt = arg min
b
D (xt, Tt(x̄ + (D + G)b))

2
+ λR (xt, x̂) (8)

where the scalar λ is a parameter, and the function R(·, ·) calculates the
symmetric overlap ratio between the bounding box of the segmented and the
estimated surface mesh. This function regularizes the minimization problem
such that the estimated surface will not be degenerated. After this step, the
residual error between estimated and segmented surface was minimized using
a non-rigid mesh registration, as proposed by Allen et al. [1].

2.3 Surface and Internal Landmark Embedding

After fitting the surface model x̂ to the segmented CT surface x, we search for
the mappingMi(·, ·) between x̂ and the annotated internal landmarks li in the
CT datasets. For the ith landmark in the tth CT data, lt,i, we assume that the
landmark position (coordinates) can be expressed as a generalized linear com-
bination of neighboring surface vertices x̂t,j ∈ N (li). The neighborhood was
defined using the k-nearest neighbors based on the Mahalanobis distance. We
used the covariance matrix of the surface model x to calculate the Mahalanobis
distance. We selected a large neighborhood such that the residual error due to
non-linearity in the mapping was minimized. The number and indices of the
neighborhood vertices can vary in each dataset. We used the unions according
to the indices as the neighborhood for each internal landmark. To describe this
more formally, we introduced the matrix XN (li) = [XT

1,N (li)
, · · · , XT

N,N (li)
]T

and the matrix Li = [lT1,i, · · · , lTN,i]T where matrix Xt,N (li) = [xt,1, · · · ,xt,M ]

comprises all vertices in an associated neighborhood for the tth dataset and the
landmark lt,i. The scalar M denotes the number of neighboring vertices. At
this point, we can formulate a generalized linear mapping with a cost function
for the linear mapping weighting vector wi for landmarks lt,i.

wi = arg min
wi

‖XN (li)wi − Li‖22 + λP(wi) (9)

In Eq. 9, the scalar λ is a Lagrange multiplier for the penalty function P. The
penalty function P is different for each generalized linear mapping. In ridge
regression [10], the L2 norm of w was used while in lasso regression [18], we
relied on the L1 norm. For elastic net regression [22], a mixture of L1 and L2
norm was employed, while in linear embedding [14] the sum of w was used.
Afterwards, we compared the results obtained using either linear embedding,
or ridge regression, or lasso regression or elastic net regression when estimating
the landmark positions. Note, that in case of linear embedding regression, the
minimization problem can be solved in closed form.
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Fig. 3: A sample of the Anatomy3 training set is shown on the top. The an-
notated internal landmarks are indicated using red crosses and the segmented
internal organs are shown in different colors. The bottom figure shows the
output of our algorithm, i.e., internal landmarks (in blue) derived based on
the surface.
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Fig. 4: Qualitative (left) and quantitative (right) evaluation of the estimation
error using unsupervised, supervised and no gravity correction.

3 Evaluation and Results

We trained our algorithm using the Silvercopus and Anatomy3 from the Vis-
ceral dataset [19]. The Silvercopus comprises 60 full body CT datasets. It was
used to train the active shape model with the gravity-deformation for the CT
datasets using unsupervised learning. We evaluate the model estimation er-
ror using five CT datasets with known height and weight. We estimate the
model with the patient metadata from the CT dataset using the statistical
shape model, the shape model with supervised gravity correction, and the
shape model with unsupervised gravity correction. We compared the estima-
tion error of these three different methods using mean vertex distance. The
error in head and shoulder is not considered in the mean vertex calculation, as
the head is only partially visible in the CT datasets, and the arms are placed
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upwards. Fig. 4 show the qualitative (left) and quantitative (right) result of
these three variations. We projected the mean vertex difference of each vertex
using color encoding on the estimated model. As we can see, without gravity
correction, most estimation errors occur in the thorax and abdominal region.
Using supervised and unsupervised gravity correction, the estimation errors
in the thorax and abdominal region were notably reduced. The mean vertex
error without gravity correction is 17.5± 12.6 mm. Using supervised gravity
correction, the mean vertex error is reduced to 16.6± 12.4 mm. The estima-
tion error is further reduced to 15.3± 11.6 mm by using unsupervised gravity
correction.

Subsequently we evaluate the internal landmark estimation using different
model estimation methods. Therefore, we use the Anatomy3 dataset com-
prising 20 full-body CT scans with 50 associated internal landmarks in each
dataset. An example of the dataset can be found in Fig. 3. This dataset was
used to learn the landmark embedding weighting wi for each landmark. We
evaluated our algorithm with a leave-one-out cross-validation. The estimation
error is given in mean ± standard deviation in mm.

We first compared the estimation error using different model estimation
methods. For each estimation method, we trained the mapping error using
locally linear embedding (LLE) and compared the mean estimation error.
Without gravity correction, the mean estimation error of all landmarks is
16.72± 12.28 mm. The error reduced with supervised gravity correction to
14.95± 13.37 mm and further reduced with unsupervised gravity correction to
13.43± 12.00 mm.

Furthermore, we compared the estimation result using LLE, ridge regres-
sion (Ridge), lasso regression (Lasso) and elastic net regression (Elastic). The
results are shown in Fig. 5. We can see from the results that in most of the
cases the ridge regression has the worst performance with an overall estima-
tion error of 22.19 ± 12.36 mm. The closed-form solution of the LLE method
outperformed ridge regression and reduced the mean error to 13.43 ± 12.00
mm. Using the elastic regression method, both the standard deviation and
the mean estimation error improved to 12.71 ± 7.32 mm. The best perfor-
mance was achieved using the lasso regression. With this method the overall
landmark estimation error was 12.19 ± 6.98 mm. We also performed a paired
t-test to all of our methods of the estimation error in spine positions and other
landmarks. We also performed statistically analysis of the performance differ-
ences between the methods using students t-test (p < 0.05) with Bonferroni
correction. Therefore a p-value below 0.0083 was considered statistically sig-
nificant. We found, that using the lasso method resulted in 38 landmarks in
significantly smaller errors compared to the ridge regression. Using the lasso
method resulted additionally compared to the elastic regression in a smaller
error for three lumbar spine and one thoracic spine landmarks. Compared to
the LLE method one landmark (trochanter major left) had significant smaller
errors.
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Fig. 5: Mean internal landmark estimation error using linear embedding (LLE),
ridge regression (Ridge), elastic net regression (Elastic) and lasso regression
(Lasso)

4 Discussion

The main contribution of this study is to introduce a pipeline for the training
and estimation of internal anatomical landmarks based on a given patient sur-
face model. The introduced pipeline takes the deformation caused by gravity
as well as the positions of the arms of the patient for the landmark estimation
into account. Therefore it allows to reliably estimate internal landmark po-
sitions of patients during interventional procedures, which may contribute to
improving navigation and guidance during image-guided procedures. Consid-
ering that interventional X-ray imaging systems can have detectors covering an
area of about 200 mm × 266 mm (20 cm × 27 cm) at iso-center, the achieved
accuracy is sufficient to facilitate automatic positioning of the X-ray system.

The goal of our work was to locate anatomical landmarks inside a patient
surface model based on surface vertices close to associated internal landmarks.
We found that our approach based on a linear mapping relative to a template
surface yielded good matches between predicted landmark positions and actual
positions. The results also indicate that our template fitting method is robust
as the accuracy for the template fitting is crucial for the subsequent internal
landmark estimation. We can also see from the results that the ridge and LLE
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methods have a higher estimation error than Elastic and Lasso regression. One
of the reasons for this difference could be that by introducing the L1 norm as a
regularizer, the Elastic and Lasso regression impose the sparsity of weighting
vector w. This might be an indication that we could improve our neighborhood
selection method by including only those vertices which are significant for the
estimation. In this work, we did not investigate non-linear mapping methods
as the number of our datasets is still limited.

Some assumptions were made in the model implementation. For the regis-
tration we divided the mesh in eight districts. Theoretically, a minimum of two
districts are needed for a plane symmetric mesh, four districts are needed for
axisymmetric mesh, and eight districts are need for a point symmetric mesh in
3D space, assuming only very small rotation is present between two meshes.
As the patient surface model is plane symmetric (left and right part of the
body), axissymmetric (part in abdomen), and point symmetric (e.g. head), we
use eight districts. Furthermore, we assumed a translation with limited rota-
tion. As the patient is lying on his back during the CT scan and the image
data of the scan is saved in a coordinate system, where the y-axis aligns with
the table movement direction only small rotation is possible between different
datasets. Also, the datasets we use comprises only patients lying on their back
and we estimate our model in DICOM coordinate, therefore, we assume that
a translation with limited rotation.

So far, we estimated internal landmarks independently and have not yet
taken any constraints regarding their positions relative to each other into ac-
count, but this could be a rewarding next step as human anatomy follows
certain rules. For certain groups of landmarks, e.g., the spine, an active shape
model enforcing neighborhood constraints could potentially further improve
the estimation results. We see our work of embedding internal landmarks into
a surface model as adding prior information to our surface models. Once in-
ternal landmarks are found, it is possible to embed an appropriately adjusted
spine model into the surface model. As most organs have a fixed position rel-
ative to the spine, fitting a spine model to a surface model can, for example,
be used for organ-specific positioning of a robotic angiography system, such
as the Artis pheno (Siemens Healthineers, Erlangen, Germany). In Fig. 6, we
show an example of fitting an adapted spline model using the estimated inter-
nal landmarks. In future work, we will look into refining these initial (a priori)
estimates for patients where pre-operative image data is available. In other
words, we will try to calculate a posteriori internal landmark estimates based
on our a-priori estimates.

Acknowledgements We gratefully acknowledge the support of Siemens Healthineers, Forch-
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Fig. 6: An example demonstrates the estimated internal landmark of a patient
surface model generated based on patient meta data such as height and weight.
A spine model is placed according to the landmark position and shown as the
overlay on the patient surface model.
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