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Abstract. The patient surface model has shown to be a useful asset to
improve existing diagnostic and interventional tasks in a clinical envi-
ronment. For example, in combination with RGB-D cameras, a patient
surface model can be used to automate and accelerate the diagnostic
imaging workflow, manage patient dose, and provide navigation assis-
tance. A shortcoming of today’s patient surface models, however, is that,
internal anatomical landmarks are not present. In this paper, we intro-
duce a method to estimate internal anatomical landmarks based on the
surface model of a patient. Our method relies on two major steps. First,
we fit a template surface model is to a segmented surface of a CT dataset
with annotated internal landmarks using keypoint and feature descriptor
based rigid alignment and atlas-based non-rigid registration. In a second
step, we find for each internal landmark a neighborhood on the template
surface and learn a generalized linear embedding between neighboring
surface vertices in the template and the internal landmark. We trained
and evaluated our method using cross-validation in 20 datasets over 50
internal landmarks. We compared the performance of four different gen-
eralized linear models. The best mean estimation error over all the land-
marks was achieved using the lasso regression method with a mean error
of 12.19 + 6.98 mm.

1 Introduction

Patient modeling has shown great potential in medical applications. One rea-
son is that RGB-D cameras have become more easily available. For example,
in the diagnostic environment, Singh et al. [1] demonstrated that a patient sur-
face model can be fitted to the patient using a RGB-D camera ahead of CT
scans to automate and accelerate the workflow. In the interventional environ-
ment, a patient surface model was used to estimate the skin dose [2], monitor the
breathing motion, or provide navigation assistance [3]. The patient model used
in these applications is a surface model. Related activities described in the lit-
erature derive an articulated skeleton [4], model the shape of the surface model
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and compare different estimation methods [5]. Unfortunately, clinical relevant
internal anatomical landmarks are not included in the surface model, as it only
models the outer shape of a patient.

In this paper, we propose a method for finding internal landmarks of the
human body e.g. vertebra, based on a surface model and evaluate its accuracy.
Once internal landmarks are found, we can embed an appropriately adjusted
spine model into the surface model. As organs have a fixed position relative to
the spine, fitting a spine model to a surface model can, for example, be used for
organ-specific positioning of a C-arm system.

2 Materials and Methods

Our learning-based method embeds the internal landmarks into a patient surface
model. We use CT datasets with annotated landmarks to train our method. For
each CT data set, the surface is segmented and represented as a surface mesh x.
We register a template surface model & to this segmented surface. Afterwards,
we learn the mapping function M; to establish the relation between model &
and associated landmark I such that
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2.1 Surface model registration and fitting

We first trained an Atlas for the patient model using the Civilian American
and European Surface Anthropometry Resource Project (CAESAR) data. Using
an active shape model (ASM), a patient surface model can be described as
Z; = & + Db;, where the T is the mean surface model in the atlas, D describes
a matrix comprising the modes of variation, and b; is the associated weighting
vector. Then, for each segmented surface model x;, we need to find the best
fitting weighting vector b; and associated rigid transformation 7; by minimizing

bi, Ty = argmin D (z — T (x + Db))* (2)

In Eq. (2), the function D calculates the minimal distance between two
meshes. To solve this minimization problem efficiently, we rely on alternating
minimization. We first estimate the transformation 7 based on a given b. This
is a well-known surface mesh rigid registration problem and can be solved us-
ing feature descriptors e.g. HoG, SPIN, and LDSIFT [6] and feature matching.
The challenge in our case is that the two meshes may partially overlap and
the deformation between two meshes may be non-rigid. As patients usually are
positioned head first, supine, i.e., are on their back, the outer shape of the pa-
tient may potentially lack distinctive key points. To establish correspondences
between feature points robustly, we first sample the key points as propsed by
Sahillioglu et al. [7], such that the sampling is almost uniform. In this way, we
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avoid accumulation of feature points in high curvature regions when identify-
ing key points. For each key point, we calculate the LDSIFT feature descriptor,
which is robust to non-rigid deformations [6]. We further incorporate the prior
knowledge, that the transformation 7 comprises mainly translations and that
rotation is very limited. In our actual implementation, we divided the surface
mesh into eight primary districts using the principal axis of the mesh, and re-
jected any cross-district matching. Due to the non-rigid deformation between
two meshes, we may find ambiguity in rigid transformation. To counteract this
effect, we consider all feasible results using RANSAC as motion cluster and use
mean shift algorithm to search the cluster center of the biggest cluster. This
cluster center is used as our motion estimation 7;. Knowing the transformation
Tz, the weighting factor b; can be estimated by minimizing

b, = arg mbinD (x — T;(Z + Db))* + a1 R (z, &) (3)

where the scalar « is a parameter, and the function R calculates the overlap
ratio between the segmented and the estimated surface mesh. This function
regularizes the minimization problem such that the estimated surface will not be
degenerated. After this step, the residual error between estimated and segmented
surface is minimized using non-rigid mesh registration, as proposed by Allen et
al. [8].

2.2 Surface and internal landmark embedding

After fitting the surface model & to the segmented CT surface x, we look for
the mapping M; between & and the annotated internal landmarks I; in CT
data sets. For the i*" landmark in the ' CT data I;;, we assume that the
landmark position (coordinates) can be expressed as a generalized linear combi-
nation of neighboring vertices @, ; € N(l;). The neighborhood is defined using
k-nearest neighbor with Mahalanobis metric. We used the covariance matrix of
the surface model « to calculate the Mahalanobis distance. We select a large
neighborhood such that the residual error due to non-linearity in mapping is
minimized. The number and indicies of neighborhood vertices can vary in each
data set. We use the unions according to the indicies as the neighborhood for
each internal landmark. To describe this more formally, we introduce matrix
Xy = X v Xaan)” and matrix L; = [If ;.- 1{,]" where ma-
trix Xy arq,) = [Te,1,- -, @] comprises all vertices in an associated neighbor-
hood for the t*" data set and the landmark l; ;. The scalar N denotes the number
of dataset and the scalar M denotes the number of neighboring vertices. At this
point, we can formulate a generalized linear mapping with a cost function for
the linear mapping weighting vector w; for landmarks I; ;.

w; = argmin || X yq)w; — Li|* + AP (w;) (4)

In Eq. (4), the scalar X is a Lagrange multiplier for the penalty function P. The
penalty function P is different for each generalized model. In ridge regression, the
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L2 norm of w is used while in lasso, the L1 norm is used respectively. The elastic
net regression using a mixture of L1 and L2 norm while in linear embedding the
sum of w is used. We investigated the linear embedding [9], ridge regression, lasso
regression and elastic net regression method to estimate the landmark position.
Noted, that in case of linear embedding regression, the minimization problem
can be solved in closed form.

3 Evaluation and Results

We trained our algorithm using Anatomy3 from the Visceral dataset [10]. This
dataset comprises 20 full-body CT scans with 50 associated internal landmarks
in each dataset. An example of the dataset can be found in Fig. 2. We evalu-
ated our algorithm using leave-one-out cross-validation and the estimation error
is given in mean + standard deviation in mm. We compared the estimation
result using linear embedding (LLE), ridge regression (Ridge), lasso regression
(Lasso) and elastic net regression (Elastic). The results are shown in Fig. 1. As
we can see from the results, in most of the cases, the ridge regression has the
worst performance with an overall estimation error of 22.19 + 12.36 mm. The
closed-form solution of LLE method outperformed ridge regression and reduced
the mean error to 13.43 £ 12.00 mm. Using elastic regression method, the stan-
dard deviation was reduced further and the mean estimation error was 12.71 +
7.32 mm. The best performance was achieved using lasso regression. The overall
landmark estimation error then was 12.19 £+ 6.98 mm.

Mean Internal Landmark Estimation Error
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Fig. 1. Mean internal landmark estimation error using linear embedding (LLE), ridge
regression (Ridge), elastic net regression (Elastic) and lasso regression (Lasso)
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4 Discussion

The goal of our work has been to position anatomical landmarks inside a sur-
face based on surface vertices close to associated landmarks. We found that our
approach based on a linear mapping relative to a template surface yielded good
matches between predicted landmark positions and their actual positions. The
results also indicate that our template fitting method is robust as the accuracy
for the template fitting is crucial for the subsequent internal landmark estima-
tion. We can also see from the results that the ridge and LLE methods have a
higher estimation error than Elastic and Lasso regression. One of the reasons can
be that by introducing L1 norm as a regularizer, the Elastic and Lasso regres-
sion impose the sparsity of weighting vector w. This might be an indication that
we could improve our neighborhood selection method and only include vertices
which are significant for the estimation. In this work, we do not investigate the
mapping using non-linear methods as the number of our datasets is limited. So
far, we estimated internal landmarks independently and have not yet considered
their joint estimation. As human anatomy follows certain rules there should be a
potential to improve our results by exploiting any mutual relationships between
them. Therefore, for certain groups of landmarks, e.g., the spine, an active shape
model of the spine could potentially further improve the estimation result. We
see our work of embedding the internal landmarks to the surface model as adding
prior information to our datasets. In Fig. 2, we show an example of fitting an
adapted spline model using the estimated internal landmarks. In future work, we
will look into the refinement method of this initial estimation when pre-operative
image data is available, i.e., we will try to calculate an a posteriori estimate based
on our a-priori estimate.

Acknowledgments We gratefully acknowledge the support of Siemens Health-
ineers, Forchheim, Germany. We also thank Siemens Corporate Technology for
providing the avatar database. Note that the concepts and information presented
in this paper are based on research, and they are not commercially available.

References

1. Singh V, Chang Y, Ma K, et al. Estimating a Patient Surface Model for Optimizing
the Medical Scanning Workflow. In: Med Image Comput Comput Assist Interv;
2014. p. 472-479.

2. Johnson PB, Borrego D, Balter S, et al. Skin dose mapping for fluoroscopically
guided interventions. Med Phys. 2011;38(10):5490-5499.

3. Bauer S, Wasza J, Haase S, et al. Multi-modal Surface Registration for Markerless
Initial Patient Setup in Radiation Therapy using Microsoft’s Kinect Sensor. In:
Proc IEEE Int Conf Comput Vis; 2011. p. 1175-1181.

4. Anguelov D, Koller D, Pang HC, et al. Recovering articulated object models from
3D range data. In: Uncertain Artif Intell; 2004. p. 18-26.

5. Zhong X, Strobel N, Kowarschik M, et al. Comparison of Default Patient Surface
Model Estimation Methods. In: Proc BVM; 2017. p. 281-286.



6 Zhong et al.

Fig. 2. A sample of the Anatomy3 training set is shown on the left. The annotated
internal landmarks are indicated using red crosses and the segmented internal organs
are shown in different colors. The middle figure shows the output of our algorithm, i.e.,
internal landmarks derived based on the surface. The result on the right demonstrates
the same idea, but this time a patient surface model was used which was generated
based on patient meta data such as height and weight.

6. Darom T, Keller Y. Scale-invariant features for 3-D mesh models. vol. 21; 2012.
p. 2758-2769.

7. Sahillioglu Y, Yemez Y. Minimum-distortion isometric shape correspondence using
EM algorithm. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2203-2215.

8. Allen B, Curless B, Popovié¢ Z. The space of human body shapes: reconstruction
and parameterization from range scans. In: ACM Trans Graph. vol. 22; 2003. p.
587-594.

9. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embed-
ding. science. 2000;290(5500):2323-2326.

10. del Toro OAJ, Goksel O, Menze B, et al. VISCERAL-VISual Concept Extrac-
tion challenge in RAdioLogy: ISBI 2014 challenge organization. Proc VISCERAL
Challenge at ISBI. 2014; p. 6-15.



