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Abstract. Soft tissue deformation induced by craniotomy and tissue
manipulation (brain shift) limits the use of preoperative image overlay
in an image-guided neurosurgery, and therefore reduces the accuracy of
the surgery as a consequence. An inexpensive modality to compensate
for the brain shift in real-time is Ultrasound (US). The core subject of
research in this context is the non-rigid registration of preoperative MR
and intraoperative US images. In this work, we propose a learning based
approach to address this challenge. Resolving intraoperative brain shift
is considered as an imitation game, where the optimal action (displace-
ment) for each landmark on MR is trained with a multi-task network.
The result shows a mean target error of 1.21 + 0.55 mm.

1 Introduction

In a neurosurgical procedure, the exposed brain tissue undergoes a time depen-
dent elastic deformation caused by various factors, such as cerebrospinal fluid
leakage, gravity and tissue manipulation. Conventional image-guided navigation
systems do not take any elastic brain deformation (brain shift) into account.
Consequently, the neuroanatomical overlays produced prior to the surgery does
not correspond to the actual anatomy of the brain without an intraoperative
image update. Hence, real-time intraoperative brain shift compensation has a
great impact on the accuracy of image-guide neurosurgery.

An inexpensive modality to update the preoperative MRI image is Ultra-
sound (US). Its intraoperative repeatability offers another further benefit with
respect to real-time visualization of intra-procedural anatomical information [1].
Both feature- and intensity-based deformable, multi-modal (MR-US) registra-
tion approaches are proposed to perform brain shift compensation.

In general, brain shift compensation approaches are based on feature-driven
deformable registration methods to update the preoperative images by establish-
ing correspondence of selected homologous landmarks. Performance of Chamfer
Distance Map [2], Iterative Closest Point (ICP) [3] and Coherent Point Drift [4]



are evaluated in phantom [2,4] and clinical studies [3]. Inherently, the accuracy
of feature-based methods is limited by the quality of the landmark segmentation
and feature mapping algorithm.

Intensity-based algorithms overcome these intrinsic problems in the feature-
based methods. Similarity metrics such as sum of squared differences [5] and
normalized mutual information [6] were first proposed to register preoperative
MR and iUS non-rigidly. However, intensity-based US-MR, non-rigid registration
poses a significant challenge due to the low signal-to-noise ratio (SNR) of the
ultrasound images and different image characteristics and resolution of US and
MR images. To tackle this challenge, Arbel et al, [7] first generates a pseudo US
image based on the preoperative MR data and performs US-US non-rigid regis-
tration by optimizing the normalized Cross Correlation metric. Recently, local
correlation ratio was proposed in a PaTch-based cOrrelation Ratio (RaPTOR)
framework [8], where preoperative MR was registered to postresection US for
the first time.

Recent advances in reinforcement learning (RL) and imitation learning (or
behavior cloning) encourages the reformulation of the MR-US non-rigid registra-
tion problem. Krebs et al. [9] trained an artificial agent to estimate the Q-value
for a set of pre-calculated actions. Since the Q-value of an action effects the
current and future registration accuracy, a sequence of deformation fields for
optimal registration can be estimated by maximizing the Q-value. In general,
reinforcement learning presupposes a finite set of reasonable actions and learns
the optimal policy to predict a combinatorial action sequence of the finite set.
However, in a real world problem such as intraoperative brain shift correction,
the number of feasible actions are infinite. Consequently, reinforcement learning
is hardly to be adapted to resolve brain shift. In contrast, imitation learning is
proposed to learn the actions itself. To this end, an agent is trained to mim-
ics the action taken by the demonstrator in associated environment. Therefore,
there is no restriction on the number of the actions. It has been used to solve
tasks in robotic [10] and autonomous driving systems [11]. Our previous work
reformulated the organ segmentation problem as imitation learning and showed
good result [12].

Inspired by Turing’s original formulation of imitation game, we reformulate
the brain shift correction problem based on the theory of imitation learning
in this work. A multi-task neural network is trained to predict the movement
of the landmarks directly by mimicing the ground-truth action exhibits by the
demonstrator.

2 Imitation Game

We consider the registration of a preoperative MRI volume to the intraoperative
ultrasound (iUS) for brain-shift correction as an imitation game. The game is
constructed by first defining the environment. The environment E for the brain-
shift correction using registration is defined as the underlying iUS volume and
MRI volume. The key points P = [p% p5, ... p%]T in the MRI volume are



shifted non-rigidly in three-space to target points Q% = [qF,q3, -, ¢%]" in
the iUS volume. Subsequently, we define the demonstrator as a system able to
estimate the ideal action, in the form of a piece-wise linear transformation aIiE’t,
for the i*" key point p];-E’t7 in the ' observation O®?, to the corresponding target
point q]f"t. The goal of the game is defined as the act of finding an agent M(-),
to mimic the demonstrator and predict the transformations of the key points

given an observation. This was formulated as a least square problem (eq. 1).
argmin = YD MO — AR5 (1)
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Here, A"t = [a]}f’t, aIZE"t, e ,a[]E\;t]T denotes the action of all N key points. In
the context of brain shift correction, we use annotated landmarks in the MRI
as key points p! and landmarks in iUS as target points gf. A neural network is
employed as our agent M.

2.1 Observation Encoding

We encode the observation of the point cloud in the environment as a feature
vector. For each point p]f’t in the point cloud, we extract a cubic sub-volume
centered at this point in three-space. The cubic sub-volume has an isotropic di-
mension of C% and voxel size of S3 in mm and its orientation is identical to the
world coordinate system. The value of each voxel in the sub-volume is extracted
by sampling the underlying iUS volume in the corresponding position, and in-
terpolating using trilinear interpolation. We denote the sub-volume encoding as

. Et Et E,t . .
a matrix VB! = [v"" vy" - v']T, where each sub-volume is flattened into a

vector v?’t € R, Apart from the sub-volume, we also encode the point cloud
information into the observation. We normalized the point cloud to a unit sphere

it ~E,t ]3

and used the normalized coordinates P~ = [Py ,i)]QE’t, ‘e ,i)]}E\;t as a part in

-t
the encoding. The observation O™ is a concatenation of V¥! and P .

2.2 Demonstrator

The demonstrator predicts the action A®! € R3*¥ of the key points. We define
the action for brain shift as the displacement vector for the key points to move to
their respective targets. As both the target points and the key points are known,
one intuitive way to calculate the action for each key point is to compute the
displacement field directly as a[iE’t = quE’t — p]f"t. As we can see, this demonstrator
estimates the displacement independent of the observation. This can make the

learning difficult. Therefore, we also calculate the translation vector t]f"t = (jf"t —
p]f’t € R3®*! as the auxiliary output of the demonstrator. Hence, the objective

function is,

argnj{;n:%:;\lM(Ot)—At\|§+AIIM’(0t)—ttII§ (2)



where, M’ denotes the agent estimating the auxiliary output and X is the weight-
ing of the auxiliary output. In the implementation, a multi-task neural network
is implemented as both M and M’.

2.3 Data Augmentation

To facilitate the learning process, we augment the training dataset to increase the
number of samples and the overall variability. In the context of brain shift cor-
rection, data augmentation can be applied both to the environment [E and to the
key points P®?. In order to augment the environment E, the elastic deformation
proposed by Simard et al. [13] is applied to the MRI and iUS volumes. Varieties
of brain shift deformations are simulated by warping the T1, flair MRI volumes
and the iUS volume, together with their associated landmarks, independently,
using two different deformation fields.

In each of the augmented environments, we also augmented the key points’
(MRI landmarks) coordinates in two different ways. For each key point, we
added a random translation vector with a maximal magnitude of 1 mm in each
direction. This synthetic non-rigid deformation was included to mimic inter-
rater differences that may be included, during landmark annotation [14]. An
additional translation vector was also used to shift all key points with a maximal
magnitude of 6 mm in each direction. This was done to simulate the residual
rigid registration error introduced during the initial registration using fiducial
markers. Of particular importance, is how these augmentation steps were applied
to the data. We assumed the translation between the key points and target points
in the training data to be a random registration error. Consequently, we initially
aligned the key points to the center of gravity of the target points. The center of
gravity is defined as mean of all associated points. The non-rigid and translation
augmentation steps were applied subsequently, to the key points.

2.4 Imitation Network

As observation encoding and the demonstrator are both based on a point cloud,
the imitation network also works with a point cloud. Inspired by PointNet [15],
which process the point cloud data without a neighborhood assumption effi-
ciently, we proposed a network architecture that utilizes both the known neigh-
borhood in the sub-volume V®? and the unknown permutation of associated

key points PE’t. The network is depicted in Fig.1. The network uses the sub-
volume and key points as two inputs and processes them independently. During
observation encoding, each row vector denotes a sub-volume vf"t € R of the
associated key point p]f"t. Therefore, we use three consecutive C' X 1 convolu-
tions with a stride size of C x 1, to approximate a 3D separable convolution and
extract the texture feature vectors. We also employ 3 x 1 convolution kernels to
extract features from key points. These low-level features are concatenated for
further processing. The main part of the network largely employs the PointNet
architecture, where we use a multilayer perceptron (MLP) to extract local fea-
tures, and max pooling to extract global features. The local and global features



Imitation Network
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Fig. 1: Tllustration imitation network architecture.

are concatenated to propagate the gradient and facilitate the training process.
The multi-task learning formulation of the network also helps improves overall
robustness. We used batch normalization for each layer and ReLU as activation
function. One property of the network is that if a copy of a key point and a
associated sub-volume is added as additional input, the output of the network
for these key points remains unchanged. This is especially useful in the context
of brain-shift correction, where the number of key points usually varies before
and after resection. Therefore, we use the maximum number of landmarks in
the training data as input key point number of our network. For a training data
smaller than this number, we arbitrarily copy one of the key points. Finally, af-

ter predicting the deformation of the key points, the deformation field between
them is interpolated using B-splines.

3 Evaluation

We trained and tested our method using the Correction of Brainshift with Intra-
Operative Ultrasound (CuRIOUS) MICCAT challenge 2018 data. This challenge
use the clinical dataset described in [14]. In the current phase of the challenge, 23
datasets are used as training data, in which 22 comprise the required MRI and
ultrasound landmark annotations before dura opening. The registration method
is evaluated using target registration error (nTRE) in mm. We used leave-one-
out cross-validation to train and evaluate our method. To train the imitation
network, we used 19 datasets for training, two for validation and one as the



test set. Each training and validation dataset was augmented by 32 folds for
the environment cascaded with 32 folds key points augmentation. In total 19.4k
datasets were used for the training, 2k were used for validation. We chose a sub-
volume with isometric dimensions C' = 7 and voxel size of 2x2x2mm?3. 16 points
were used as input key points and a batch size of 128 was used for the training.
The adapted Adam optimizer proposed by Sashank et al. [16] with a learning rate
of 0.001 was used. The results are shown in Tab. 1. Using our method, the overall
mean target registration errors (mTREs) can be reduced from 5.37 + 4.27 mm
to 1.21 + 0.55mm. In a similar setting, but applied to different datasets, the
state-of-the-art registration method RaPTOR has an overall mTRE of 2.9 +
0.8 mm [8].

The proposed imitation network has 0.22 M trainable parameters, requires
6.7 M floating point operations (FLOPS), and converges within 7 epochs. To
calculate the computational complexity in the application phase, we consider
the network having a complexity of O(1) due to pretraining. The observation
encoding step has a complexity of O(N x C3), where N denotes the number
of key points and C denotes the number of sub-volume dimension. Therefore,
the complexity of the proposed algorithm is O(N x C3), independent of the
resolution of underlying MRI or iUS volume. In the current implementation,
the average runtime of the algorithm is 1.77 sec, of which 88% time is used for
observation encoding using CPU.

4 Discussion

To our best knowledge, an imitation learning based approach is proposed for
the first time in the context of brain shift correction. The presented method
achieves encouraging results within 2 mm with real-time capability (<2sec). In
21 out of 22 datasets, the mTREs are reduced significantly. As the mTRE in
22'h dataset is initially small, the inter-rater difference of 0.5 mm is still remark-
able [14]. Hence, these results indicates the applicability of the proposed method
in the clinical environment. However, following aspects should be concerned for
the further development. One important aspect is the number and variation of
the training data used in the proposed imitation learning algorithm. Although
the number of the training datasets are increased effectively by applying data
augmentation methods (described in Sec. 2.3), variation of the training data
such as location of the tumor and orientation of the head cannot be augmented
without further considerations. A common tool to simulate the different image
orientation is rotational augmentation. However, it alters the effect of gravity
implicitly, therefore results in unrealistic training data. Thus, rotational aug-
mentation is inappropriate for the data augmentation in context of brain shift
compensation. The other aspect is the comprehensive validation of the proposed
method. The generalizability and robustness should be evaluated with a larger
amount of data acquired with different intraoperative image modalities. In this
challenge, we use landmarks as key points and predict the deformation of the
landmarks directly. In future applications, we could also adapt our approach to



Table 1: Evaluation of the mean distance between landmarks in MRI and ultra-
sound before and after correction.

Patient ID Landmarks|Mean distance (range)|Mean distance (range)
number initial in mm corrected in mm
1 15 1.82 (0.56-3.84) 0.88 (0.25-1.39)
2 15 5.68 (3.43-8.99) 1.01 (0.42-2.32)
3 15 9.58 (8.57-10.34) 1.10 (0.30-4.57)
4 15 2.99 (1.61-4.55) 0.89 (0.25-1.58)
5 15 12.02 (10.08-14.18) 1.78 (0.66-5.05)
6 15 3.27 (2.27-4.26) 0.72 (0.27-1.26)
7 15 1.82 (0.22-3.63) 0.86 (1.72-0.28)
8 15 2.63 (1.00-4.15) 1.45 (0.73-2.40)
12 16 19.68 (18.53-21.30) 2.27 (1.17-4.31)
13 15 4.57 (2.73-7.52) 0.96 (0.31-1.44)
14 15 3.03 (1.99-4.43) 0.87 (0.31-1.92)
15 15 3.32 (1.15-5.90) 0.69 (0.23-1.17)
16 15 3.39 (1.68-4.47) 0.83 (0.34-1.96)
17 16 6.39 (4.46-7.83) 0.96 (0.31-1.61)
18 16 3.56 (1.44-5.47) 0.89 (0.33-1.33)
19 16 3.28 (1.30-5.42) 1.26 (0.41-1.74)
21 16 4.55 (3.44-6.17) 0.85 (0.26-1.33)
23 15 7.01 (5.26-8.26) 1.08 (0.28-3.40)
24 16 1.10 (0.45-2.04) 1.61 (0.52-2.84)
25 15 10.06 (7.10-15.12) 1.76 (0.62-1.76)
26 16 2.83 (1.60-4.40) 0.93 (0.47-1.44)
27 16 5.76 (4.84-7.14) 2.88 (0.79-5.45)
Mean + STD 5.37 £ 4.27 1.21 £ 0.55

control points of a free-form deformation or contour points of a certain structure
(e.g. vessel). The associated target points could be either manually annotated
or automatically estimated with point matching algorithms.

5 Conclusion

In this study, we proposed a novel approach for intra-operative brain shift cor-
recting, during tumor resection surgery, using imitation learning. The presented
method uses observation encoding to describe the local texture and point-cloud
information and the trained imitation network is used to estimate the movement
of landmarks defined in pre-operative MR, volumes, directly to their counterparts
in iUS volumes, based on this encoding. Our network reduced the mean land-
mark distance between the pre- and intra-operative image pairs substantially,
from 5.37 £ 4.27mm to 1.21 + 0.55mm, in real-time, which is particularly
compelling for its future use in a surgical setting. Additionally, the proposed
approach is flexible, as it is not modality- or anatomy-specific, and thus could
be employed in a variety of image-guided surgical interventions.
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