
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, HINDAWI 1

A Semi-Automated Usability Evaluation
Framework for Interactive Image Segmentation

Systems
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Abstract—For complex segmentation tasks, the achievable accuracy of fully automated systems is inherently limited. Specifically,
when a precise segmentation result is desired for a small amount of given data sets, semi-automatic methods exhibit a clear benefit for
the user. The optimization of human computer interaction (HCI) is an essential part of interactive image segmentation. Nevertheless,
publications introducing novel interactive segmentation systems (ISS) often lack an objective comparison of HCI aspects. It is
demonstrated, that even when the underlying segmentation algorithm is the same throughout interactive prototypes, their user
experience may vary substantially. As a result, users prefer simple interfaces as well as a considerable degree of freedom to control
each iterative step of the segmentation.
In this article, an objective method for the comparison of ISS is proposed, based on extensive user studies. A summative qualitative
content analysis is conducted via abstraction of visual and verbal feedback given by the participants. A direct assessment of the
segmentation system is executed by the users via the system usability scale (SUS) and AttrakDiff-2 questionnaires. Furthermore, an
approximation of the findings regarding usability aspects in those studies is introduced, conducted solely from the system-measurable
user actions during their usage of interactive segmentation prototypes. The prediction of all questionnaire results has an average
relative error of 8.9 %, which is close to the expected precision of the questionnaire results themselves. This automated evaluation
scheme may significantly reduce the resources necessary to investigate each variation of a prototype’s user interface (UI) features and
segmentation methodologies.

Index Terms—Usability, Methodology, User Study, Evaluation, Interactive Segmentation, Medical Image Segmentation.
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1 INTRODUCTION

TO the best of our knowledge, there is not one publi-
cation in which user based scribbles are combined with

standardized questionnaires in order to assess an interactive
image segmentation system’s quality. This type of synergetic
usability measure is a contribution of this work. In order to
provide a guideline for an objective comparison of interac-
tive image segmentation approaches, a prototype providing
a semi-manual pictorial user input, introduced in Sec. 2.2.1,
is compared to a prototype with a guiding menu-driven UI,
described in Sec. 2.2.2. Both evaluation results are analyzed
with respect to a joint prototype, defined in Sec. 2.2.3, in-
corporating aspects of both interface techniques. All three
prototypes are built utilizing modern web technologies.
An evaluation of the interactive prototypes is performed
utilizing pragmatic usability aspects described in Sec. 4.2,
as well as hedonic usability aspects analyzed in Sec. 4.3.
These aspects are evaluated via two standardized ques-
tionnaires (System Usability Scale and AttrakDiff-2) which
form the ground truth for a subsequent prediction of the
questionnaires’ findings via a regression analysis outlined
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in Sec. 3.3. The outcome of questionnaire result prediction
from interaction log data only is detailed in Sec. 4.4.This
novel automatic assessment of pragmatic as well as hedonic
usability aspects is a contribution of this work. Our source
code release for the automatic usability evaluation from user
interaction log data can be found at https://github.com/
mamrehn/interactive image segmentation evaluation.

1.1 Image Segmentation Systems

Image segmentation can be defined as the partitioning of an
image into a finite number of semantically non-overlapping
regions. A semantic label can be assigned for each region.
In medical imaging, each individual region of a patients’
abdominal tissue might be regarded as healthy or cancerous.
Segmentation systems can be grouped into three principal
categories, each differing in the degree of involvement of an
operating person (user): manual, automatic, and interactive.
(1) During manual tumor segmentation, a user provides
all elements i in the image grid which have neighboring
elements N(i) of different labels than i. The system then
utilizes this closed curve contour line information to infer
the labels for remaining image elements via simple region
growing. This minimal assistance by the system causes the
overall segmentation process of one lesion to take up to
several minutes of user interaction time. However, reaching
an appropriate or even perfect segmentation result (despite
noteworthy inter-observer difference [1]) is feasible [2, 3].
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In practice, few time-consuming manual segmentations are
performed by domain experts, in order to utilize the results
as a reference standard in radiotherapy planning [4]. (2)
A fully automated approach does not involve a user’s
interference with the system. The introduced deficiency in
domain knowledge for accurately labeling regions may be
restored partially by automated segmentation approaches.
The maximum accuracy of the segmentation result is there-
fore highly dependent on the individual set of rules or
amount of training data available. If the segmentation task is
sufficiently complex, a perfect result may not be reachable.
(3) Interactive approaches aim at a fast and exact segmen-
tation by combining substantial assistance by the system
with knowledge about a very good estimate of the true
tumor extent provided by trained physicians during the
segmentation process [5]. In contrast to fully automated
solutions, prior knowledge is (also) provided during the
segmentation process. Although, interactive approaches are
also costly in terms of manual labor to some extent, they can
supersede fully automated techniques in terms of accuracy.
Due to their exact segmentation capabilities, interactive
segmentation techniques are frequently chosen to outline
pathologies during imaging assisted medical procedures,
like hepatocellular carcinomata during TACE (see Sec. 1.6).

1.2 Evaluation of Image Segmentation Systems
Performance evaluation is one of the most important as-
pects during the continuous improvement of systems and
methodologies. With non-interactive computer vision and
machine learning systems for image segmentation, an objec-
tive comparison of systems can be achieved by evaluating
pre-selected data sets for training and testing. Similarity
measures between segmentation outcome and ground truth
images are utilized to quantify the quality of the segmenta-
tion result.

With interactive segmentation systems (ISS), a complete
ground truth data set would also consist of the adaptive
user interactions which advance the segmentation process.
Therefore, when comparing ISS, the user needs to be in-
volved in the evaluation process. User interaction data
however is highly dependent on (1) the users’ domain
knowledge and the unique learning effect of the human
throughout a period of exposure to the problem domain,
(2) the system’s underlying segmentation method and the
users’ preferences toward this technique, as well as (3)
the design and usability (the user experience [6, 7]) of the
interface which is presented to the user during the inter-
active segmentation procedure [3, 8]. This includes users’
differing preferences towards diverse interaction systems
and tolerances for unexpected system behavior. Considering
(1–3), an analytically expressed objective function for an
interactive system is hard to define. Intuitively, the user
wants to achieve a satisfying result in a short amount of time
with ease [9]. A direct assessment of a system’s usability
is enabled via standardized questionnaires, as described in
Sec. 2.3. Individual usage of ISS can be evaluated via the
segmentation result’s similarity to the ground truth labeling
according to the Sørensen-Dice coefficient (Dice) [10] after
each interaction. The interaction data utilized for these
segmentations has to be representative in order to generalize
the evaluation results.

1.3 Types of User Interaction

As described by Olabarriaga et al. [11] as well as Zhao
and Xie [12], user interactions can be categorized with
regards to the type of interface an ISS provides. The fol-
lowing categories are emphasized. (1) A pictorial mask
image is the most intuitive form of user input. Humans use
this technique when transferring knowledge via a visual
medium [13]. The mask overlayed on the visualization of
the image I ∈ Rw,h to segment consists of structures called
scribbles, where w is the width and h is the height of the
2-D image I in pixels. Scribbles are seed points, lines, and
complex shapes, each represented as a set of individual seed
points. One seed point is a tuple si = (pi, `i), where pi ∈ R2

describes the position of the seed in image space. The class
label of a scribble in a binary segmentation system is rep-
resented by `i ∈ {background, foreground}. Scribbles need
to be defined by the user in order to act as a representative
subset S of the ground truth segmentation G = {s1, s2, . . . }.

(2) A menu-driven user input scheme as in [14, 15] limits
the user’s scope of action. Users trade distinct control over
the segmentation outcome for more guidance provided by
the system. The locations or the shapes of newly created
scribbles are fixed before presentation to the user. It is
challenging to achieve an exact segmentation result using
a method from this category. Rupprecht et al. [14] describe
significant deficits in finding small objects and outline a
tendency of the system to automatically choose seed point
locations near the object border, which cannot be labeled
by most users’ visual inspection and would therefore not
have been selected by the users themselves. Advantages of
menu-driven user input are the high level of abstraction of
the process, enabling efficient guidance for inexperienced
users in their decision which action to perform for an op-
timal segmentation outcome (regarding accuracy over time
or number of interactions) [11, 16].

1.4 Generation of Representative User Input

Nickisch et al. [17] describe crowd sourcing and user
studies as two methods to generate plausible user input
data. The cost efficient crowd sourcing method often lacks
control and knowledge of the users’ motivation. Missing
context information for crucial aspects of the data acqui-
sition procedure creates a challenging task objectifying the
evaluation results. Specialized fraud detection methods are
commonly used in an attempt to pre-filter the recorded
corpus and extract a usable subset of data. McGuinness and
O’Connor [18] proposed an evaluation of ISS via extensive
user experiments. In these experiments, users are shown
images with descriptions of the objects they are required to
extract. Then, users mark foreground and background pixels
utilizing a platform designed for this purpose. These ac-
quisitions are more time-consuming and cost intensive than
crowd-sourcing, since they require a constant involvement
of users. However, the study’s creators are able to control
many aspects of the data recording process, which enables
detailed observations of user reactions. The data samples
recorded are a representative subset of the focus group
of the finalized system. A user study aims at maximizing
repeatability of its results. In order to increase the objectivity
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of the evaluation in this work, a user study is chosen to be
conducted. The study is described in Sec. 3.2.

1.5 State-of-the-art Evaluation of Interactive Segmen-
tation Systems
1.5.1 Segmentation Challenges
In segmentation challenges like SLIVER07 [19] (mainly)
fully automated approaches are competing for the highest
score in a predefined image quality metric. Semi-automatic
methods are allowed for submission if the manual interac-
tion with the test data is strictly limited to pre-processing
and (single seed point) initialization of an otherwise fully
automated process. ISS may be included into the contests’
final ranking, but are regarded as non-competing, since the
structure of the challenges is solely designed for automated
approaches. The PROMISE12 challenge [20] had a separate
category for proposed interactive approaches, where the
user (in this case, the person also describing the algorithm)
may add an unlimited number of hints during segmenta-
tion, without observing the experts’ ground truth for the
test set. No group of experts was provided to operate the
interactive method for comparative results. The submitted
interactive methods’ scores in the challenge’s ranking are
therefore highly dependent on the domain knowledge of
single operating users and can not be regarded as an objec-
tive measure.

1.5.2 Comparisons for Novel Segmentation Approaches
In principle, with every new proposal of an interactive
segmentation algorithm or interface, the authors have to
demonstrate the new method’s capabilities in an objective
comparison with already established techniques. The effort
spent for these comparisons by the original authors varies
substantially. According to [9], many evaluation methods
only consider a fixed input. This approach is especially
unsuited for evaluation, without simultaneously defining
an appropriate interface, which actually validates that a
real person utilizing this UI is capable of generating similar
input patterns to the ones provided. Although, there are
some overview publications, which compare several ap-
proaches [11, 18, 21, 22, 23], the number of publications out-
lining new methods is disproportionately greater, leaving
comparisons insufficiently covered. Olabarriaga et al. [11]
main contribution is the proposition of criteria to evaluate
interactive segmentation methods: accuracy, repeatability,
and efficiency. McGuinness et al. [18] utilized a unified user
interface with multiple underlying segmentation methods
for the survey they conducted. They recorded the current
segmentation masks after each interaction to gauge segmen-
tation accuracy over time. Instead of utilizing a standard-
ized questionnaire, users were asked to rate the difficulty
and perceived accuracy of the segmentation tasks on a scale
of 1 to 5. Their main contribution is an empirical study
by 20 subjects segmenting with four different segmentation
methods in order to conclude that one of the four methods
is best, given their data and participants. Their ranking is
primarily based on the mean accuracy over time achieved
per segmentation method. McGuinness et al. [22] define
a robot user in order to simulate user interactions during
an automated interactive segmentation system evaluation.

However, they do not investigate the similarity of their rule-
based robot user to seed input pattern by individual human
subjects. Zhao et al. [21] concluded in their overview over
interactive medical image segmentation techniques, that
there is a clear need of well-defined performance evaluation
protocols for interactive systems.

In Tab. 1, a clustering of popular publications describing
novel interactive segmentation techniques is depicted. The
evaluation methods can be compared by the type of data
utilized as user input. Note that there is a trend towards
more elaborate evaluations in more recent publications. The
intent and perception of the interacting user are a valuable
resource worth considering when comparing interactive
segmentation systems [24]. However, only two of the 42
related publications listed in Tab. 1 make use of the insights
about complex thought processes of a human utilizing an
interactive segmentation system for the ranking of novel
interactive segmentation methods. Ramkumar et al. [25,
26] acquire these data by well-designed questionnaires, but
do not automate their evaluation method. We propose an
automated, i. e. scalable, system to approximate pragmatic
as well as hedonic usability aspects of a given interactive
segmentation system.

1.6 Clinical Application for Interactive Segmentation

Hepatocellular carcinoma (HCC) is among the most preva-
lent malignant tumors worldwide [63, 64]. Only 20 – 30 % of
cases are curable via surgery. Both, a patient’s HCC and hep-
atic cirrhosis in advanced stages may lead on to the necessity
of alternative treatment methods. For these inoperable cases,
trans-catheter arterial chemoembolization (TACE) [65] is a
promising and widely used minimally invasive intervention
technique [66, 67]. During TACE, extra-hepatic collateral
vessels are occluded, which previously supplied the HCC
with oxygenated blood. To locate these vessels, it is crucial
to find the exact shape as well as the position of the tu-
mor inside the liver. Interventional radiology is utilized to
generate a volumetric cone-beam C-arm computed tomog-
raphy (CBCT) [68] image of the patient’s abdomen, which
is processed to precisely outline and label the lesion. The
toxicity of TACE decreases, the less healthy tissue is labeled
as pathologic. The efficacy of the therapy increases, the less
cancerous tissue is falsely labeled as healthy [69]. However,
precisely outlining the tumor is challenging, especially due
to its variations in size and shape, as well as a high diver-
sity in X-ray attenuation coefficient values representing the
lesion as illustrated in Fig. 1. While fully automated systems
may yield insufficiently accurate segmentation results, ISS
tend to be well suited for an application during TACE.

2 METHODS

In the following Section, the segmentation method under-
lying the user interface prototypes is described in Sec. 2.1
in order to subsequently adequately outline the different
characteristics of each novel interface prototype in Sec. 2.2.
Usability evaluation methods utilized are detailed regard-
ing questionnaires in Sec. 2.3, semi-structured feedback in
Sec. 2.4, as well as the test environment in Sec. 2.5.
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Table 1
Overview of seed point location selection methods for a set of influential publications in the field of interactive image segmentation. Additional

unordered seed information can be retrieved by a) manually drawn seeds or b) randomly generated seeds. Seeds can be inferred rule-based from
the ground truth segmentation by c) sampling the binary mask image, d) from provided bounding box mask images, e) random sampling from

tri-maps generated by erosion and dilation, or f) by a robot user i. e. user simulation. A tri-map specifies background, foreground, and mixed areas.
Seeds can also be provided by real users via the g) final seed masks after all interactions on one input image, or h) the ordered iterative scribbles.
i) Questionnaire data from Goals, Operators, Methods, and Selection rules (GO) as well as National Aeronautics and Space Administration Task

Load Index (TL) may be retrieved by interviewing users after the segmentation process. Check marks indicate the usage of seeds in the
publications listed. Publications with check marks in brackets display these seeds but do not utilize them for evaluation.

Arbitrary Seeds Seeds Derived from GT Multiple User Data based Seeds
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Year Publication Manual Random Binary Mask Box Tri-maps Robot Final Seeds Scribbles Questionnaire
2019 Amrehn [27] ✓ [9, 28, 29]
2018 Chen [30] (✓) ✓ [14] ✓ (N = 10)

Amrehn [31] ✓

2017 Liew [32] (✓) (✓) ✓ [9]
Wang [33] ✓ (N = 2)
Wang [29] ✓ [34] ✓ (N = 2)

Amrehn [34] ✓ ✓ [29]
Amrehn [35] ✓

2016 Ramkumar [25] ✓(GO, TL)
Ramkumar [26] ✓(TL)

Jiang [36] ✓ [37] ✓ (N = 5)
Xu [28] (✓) (✓) ✓

Chen [38] ✓

2015 Andrade [39] ✓

Rupprecht [14] ✓ ✓

2014 Bai [40] ✓ ✓

2013 Jain [41] ✓ ✓

He [42] ✓

2012 Kohli [9] ✓ ✓ ✓ (✓) ✓

2011 Zhao [43] ✓ ✓

Top [44] (✓) ✓ ✓ (N = 4)
McGuinness [22] (✓) ✓ ✓

2010 Nickisch [17] ✓ ✓ (✓) ✓

Gulshan[45] ✓ (✓)
Batra [46] ✓ ✓

Ning [47] ✓

Price [48] ✓ ✓ [49] ✓ [50]
Moschidis [51] ✓

2009 Moschidis [52] ✓ ✓

Singaraju [49] ✓ ✓ [50]
2008 Duchenne [53] ✓ ✓ [50]

Levin [54] ✓

Vicente [55] ✓

2007 Protiere [56] ✓

2006 Boykov [57] ✓

Grady [58] ✓

2005 Vezhnevets [59] ✓

Cates,[60] (✓) ✓ (N = 8+3)
2004 Li [61] ✓

Rother [50] ✓ (✓) (✓) ✓

Blake [62] ✓ ✓ [37]
2001 Martin [37] ✓ ✓

2.1 Segmentation Method

GrowCut [59] is a seeded image segmentation algorithm
based on cellular automaton theory. The automaton is a
tuple (GI,Q, δ), where GI is the data the automaton op-
erates on. In this case GI is the graph of image I, where the
pixels/voxels act as nodes ve. The nodes are connected by
edges on a grid defined by the Moore neighborhood system.
Q defines the automaton’s possible states and δ the state
transition function utilized.

Q ∋ Qt
e = ((pe, `

t
e), Θt

e, ce, ht
e) (1)

As detailed in Eq. 1, Q is the set of each node’s state, where
pe is the node’s position in image space and `te is the class
label of node e at GrowCut iteration t. 0 ≤ Θt

e ≤ 1 is the
strength of e at iteration t. The feature vector ce describes

the node’s characteristics. The pixel value I (pe) at image
location pe is typically utilized as feature vector ce [59].
Here, we additionally define ht

e ∈ N0 as a counter for ac-
cumulated label changes of e during the GrowCut iteration,
as described in [31], with ht=0

e = 0. Note that this extension
of GrowCut is later utilized for seed location suggestion in
two of the three prototypes tested. A node’s strength Θt=0

e

is initialized with 1 for scribbles, i. e. (pe, `
t=0
e ) ∈ St=0, and

0 otherwise.

Iterations δ (Qt
e) = Qt+1

e are performed utilizing local
state transition rule δ: starting from initial seeds, labels
are propagated based on local intensity features c. At each
discrete time step t, each node f attempts to conquer its
direct neighbors. A node e is conquered if the condition in

https://github.com/flandrade/dataset-interactive-algorithms
https://web.archive.org/web/20161203110733/http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Figure 1. Liver lesion segmentations. Depicted are central slices through
the volumes of interest of reconstructed images acquired by a C-arm
CBCT scanner. The manually annotated ground truth segmentation is
displayed as an overlay contour line in green.

Eq. 2 is true.

Θ
t
f ⋅ g(ce, cf ) > Θ

t
e , where (2)

g(ce, cf ) = 1 −
∥ce − cf∥2

maxj,k ∥cj − ck∥2
(3)

If node e is conquered, the automaton’s state set is updated
according to Eq. 4. If e is not conquered, the node’s state

remains unchanged, i. e. Qt+1
e = Qt

e.

Qt+1
e = ((pe, `

t
f ),Θt

f ⋅ g(ce, cf ), ce,ht
e + 1), (4)

The process is guaranteed to converge with positive and
bounded node strengths (∀e,t Θt

e ≤ 1) monotonously
decreasing (since g(.) ≤ 1). The image’s final segmentation
mask after convergence is encoded as part of state Qt=∞,
specifically in (pe, `

t=∞
e ) for each node e.

2.2 Interactive Segmentation Prototypes

Three interactive segmentation prototypes with different
UIs were implemented for usability testing. The segmen-
tation technique applied in all prototypes is based on the
GrowCut approach as described in Sec. 2.1. GrowCut al-
lows for efficient and parallelizable computation of image
segmentations while providing an acceptable accuracy from
only few initial seed points. The method is also chosen due
to its tendency to benefit from careful placement of large
quantities of seed points. It is therefore well suited for an
integration into a highly interactive system. A learning-
based segmentation system was not utilized for usability
testing due to its inherent dependence of segmentation
quality on the characteristics of prior training data, which
potentially adds a significant bias to the test results, given
only a small data set as utilized in the scope of this work.

All three user interfaces provided include an undo button
to reverse the effects of the user’s latest action. A finish
button is used to define the stopping criterion for the

Figure 2. Semi-manual segmentation prototype user interface. The cur-
rent segmentation’s contour line (light blue) is adjusted towards the
user’s estimate of the ground truth segmentation by manually adding
foreground (blue) or background (red) seed points.

interactive image partitioning. The transparency of both,
the contour line and seed mask displayed, is adjustable to
one of five fixed values via the opacity toggle button. The
image contrast and brightness (windowing) can be adapted
with standard control sliders for the window width and
the window center operating on the image intensity value
range [70]. All protoypes incorporate a help button used
to provide additional guidance for the prototype’s usage
during the segmentation task. The segmentation process
starts with a set of pre-defined background-labels S0 along
the edges of the image, since an object is assumed to be
located in its entirety inside the displayed region of the
image.

2.2.1 Semi-manual Segmentation Prototype
The UI of the semi-manual prototype, depicted in Fig. 2,
provides several interaction elements. A user can add seed
points as an overlay mask displayed on top of the im-
age. These seed points have a pre-defined label of either
foreground for the object or background used for all other
image elements. The label of the next brush strokes (scrib-
bles) can be altered via the buttons named object seed and
background seed. After each interaction n ∈ N, a new iteration
of the seeded segmentation is started given the image I as
well as the updated set of seeds Sn

= Sn−1 ∪ {sn1 , sn2 , . . . } as
input.

2.2.2 Guided Segmentation Prototype
The system selects two seed point locations pn

1 and pn
2 ,

each with the lowest label certainty values assigned by
the previous segmentation process. The seed point loca-
tions are shown to the user in each iteration n, as de-
picted in Fig. 3. There are four possible labeling schemes
for those points in the underlying two-class classification
problem, since each seed point sni = (pn

i , `
n
i ) has a label

`ni ∈ {background, foreground}. The interface providing
advanced user guidance displays the four alternative seg-
mentation contour lines, which are a result of the four
possible next steps during the iterative interactive segmen-
tation with respect to the labeling of the new seed points
sn1 and sn2 . The user selects the only correct labeling, where
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Figure 3. Guided segmentation prototype user interface. The current
segmentation displayed on the upper left can be improved by choosing
one of the four segmentation alternatives displayed on the right. The
user is expected to choose the upper-right option in this configuration,
due to the two new seeds’ matching background and foreground labels.

all displayed object and background seeds are inside the
object of interest and the image background, respectively.
The alternative views on the right act as four buttons to
define a selection. To further assist the user in their decision
making, the region of interest, defined by pn

1 and pn
2 , is

zoomed in for the option view on the right and displayed as
a cyan rectangle in the overview image on the left of the UI.
The differences regarding the previous iteration’s contour
line and one of the four new options each are highlighted
by dotted areas in the four overlay mask images. After the
user selects one of the labelings, the two new seed points
are added to the current set of scribbles Sn. The scribbles
Sn ∶= Sn−1 ∪ {sn1 , sn2 } are utilized as input for the next iter-
ation, on which basis two new locations pn+1

1 and pn+1
2 are

computed.
The system-defined locations of the additional seed

points can be determined by argmaxe ht=∞,n−1
e , the loca-

tion(s) with maximum number of label changes during
GrowCut segmentation. Frequent changes define specific
image elements and areas in which the GrowCut algorithm
indicates uncertainty in finding the correct labels. Two loca-
tions in ht=∞,n−1 are then selected as pn

1 and pn
2 , which

stated the most changes in labeling during the previous
segmentation with input image I and seeds Sn−1.

2.2.3 Joint Segmentation Prototype

The joint prototype depicted in Fig. 4 is a combination of a
pictorial interaction scheme and a menu-driven approach.
(1) A set of J ∈ N pre-selected new seeds is displayed in
each iteration. The seeds’ initial labels are set automatically,
based on whether their position is inside (foreground) or
outside (background) the current segmentation mask. The
user may toggle the label of each of the new seeds, which
also provides an intuitive undo functionality. The automated
suggestion process for new seed point locations is depicted
in Fig. 5. The seed points are suggested deterministically
based on the indices of the maximum values in an element-
wise sum of three approximated influence maps. These
maps are the gradient magnitude image of I, the previous
label changes ht=∞,n−1 per element in GI weighted by an

Figure 4. Joint segmentation prototype user interface. The user toggles
the labels of pre-positioned seed points, which positions are displayed
to them as colored circles, to properly indicate their inclusion into the
set of object or background representatives. New seeds can be added
at the position of current interaction via a long-press on the overlay
image. The segmentation result as well as the displayed contour line
adapt accordingly after each interaction.

empirically determined factor of 17/12, and an influence
map based on the distance of each element in I to the
current contour line. Note that for the guided prototype (see
Sec. 2.2.2), only h was used for the selection of suggested
seed point locations. This scheme was extended for the joint
prototype, since extracting J ≈ 20 instead of only the top
two points solely from h potentially introduces suggested
point locations forming impractical local clusters instead of
spreading out with higher variance in the image domain.
This process approximates the true influence or entropy
(information gain) of each possible location for a new seed.

When all seed points {sn1 , sn2 , . . . , snJ} presented to the
user are toggled to their correct label, the user may click
on the new points button to initiate the next iteration with an
updated set of seed points Sn

= Sn−1 ∪ {sn1 , sn2 , . . . , snJ}. An-
other set of seed points {sn+11 , sn+12 , . . . , sn+1J } is generated
and displayed.

(2) In addition to pre-selected seeds, a single new seed
point sn0 can be added manually via a user’s long-press
on any location in the image. A desired change in the
current labeling of this region is interpreted given this
user action. Therefore, the new seed point’s initial label
is set by inverting the current label of the given location.
A new segmentation is initiated by this interaction based
on Sn

= Sn−1 ∪ {sn0 , sn1 , . . . , snJ}. Note that the labels of sni
are still subject to change via toggle interactions until the
new points button is pressed.

2.3 Questionnaires

2.3.1 System Usability Scale (SUS)

The SUS [71, 72] is a widely used, reliable, and low-cost sur-
vey to assess the overall usability of a prototype, product, or
service [73]. Its focus is on pragmatic quality evaluation [74,
75]. The survey is technology agnostic, which enables a
utilization of the usability of many types of user interfaces
and ISS [76]. The questionnaire consists of ten statements
and an unipolar five-point Likert scale [77]. This allows for
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Figure 5. The approximated influence map for new seed point loca-
tions for the joint segmentation prototype. The map is generated by a
weighted sum of gradient magnitude image, number of cell changes
h
t=∞
e per cell e obtained from the previous GrowCut segmentation, as

well as the distance to the contour line of the current segmentation.

an assessment in a time span of about three minutes per
participant. The statements are as follows:

1) I think that I would like to use this system frequently.
2) I found the system unnecessarily complex.
3) I thought the system was easy to use.
4) I think that I would need the support of a technical

person to be able to use this system.
5) I found the various functions in this system were well

integrated.
6) I thought there was too much inconsistency in this

system.
7) I would imagine that most people would learn to use

this system very quickly.
8) I found the system very cumbersome to use.
9) I felt very confident using the system.

10) I needed to learn a lot of things before I could get going
with this system.

The Likert scale provides a fixed choice response format to
these expressions. The (N − 1)/2 th choice in an N -point
Likert scale always is the neutral element. Using the scale,
subjects are asked to define their degree of consent to
each given statement. The fixed choices for the five-point
scale are named strongly disagree, disagree, undecided, agree,
and strongly agree. During the evaluation of the survey,
these names are assigned values xSUS

s,i ∈ {0, 1, . . . , 4} per
subject s in the order presented, for statements with index
i ∈ {1, 2, . . . , 10}. SUS scores enable simple interpretation
schemes, understandable also in multi-disciplinary project
teams. The result of the SUS survey is a single scalar value,
in the range of zero to 100 as a composite measure of the
overall usability. The score is computed according to Eq. 5,
as outlined in [71], given S participants, where xSUS

s,i is the
response to the statement i by subject s.

sus(x) = 2.5

S
∑
s

[ ∑
odd i

x
SUS
s,i + ∑

even i

(4 − x
SUS
s,i ) ] (5)

A neutral participant (∀i xSUS
s,i = 2) would produce a SUS

score of 50. Although the SUS score allows for straight-
forward comparison of the usability throughout different

0 14.0 28.6 44.0 60.7 77.9 93.1 100
0.00

0.02

0.04 worst awful poor OK good excellent best

System usability scale (SUS) rating

Figure 6. Mapping from a SUS score to an adjective rating scheme
proposed by Bangor et al. [76]. Given a SUS rating, the relative height
of the Gaussian distributions approximate the probabilities for each
adjective. Distributions’ µ and σ were extracted evaluating 959 surveys
with added adjective rating as an 11th question.

systems, there is no simple intuition associated with the
resulting scalar value. SUS scores do not provide a linear
mapping of a system’s quality in terms of overall usability.
In practice, a SUS of less than 80 is often interpreted as an
indicator of a substantial usability problem with the system.
Bangor et al. [76, 78] proposed an interpretation of the score
in a seven-point scale. They added an eleventh question to
959 surveys they conducted. Here, participants were asked
to describe the overall system as one of these seven items
of an adjective rating scale: worst imaginable, awful, poor, OK,
good, excellent, and best imaginable. The resulting SUS scores
could then be correlated with the adjectives. The mapping
from scores to adjectives resulting from their evaluation is
depicted in Fig. 6. This mapping also enables an absolute
interpretation of a single SUS score.

2.3.2 Semantic Differential AttrakDiff-2

A semantic differential is a technique for the measurement
of meaning as defined by Osgood et al. [79, 80]. Semantic
differentials are based on the theory, that the implicit antici-
patory response of a person to a stimulus object is regarded
as the object’s meaning. Since these implicit responses them-
selves cannot be recorded directly, more apparent responses
like verbal expressions have to be considered [81, 82]. These
verbal responses have to be sensitive to and maximally
dependent on meaningful states while independent from
each other [80]. Hassenzahl et al. [83, 84] defined a set
of 28 pairs of verbal expressions suitable to represent a
subject’s opinion on the hedonic as well as pragmatic quality
(both aspects of perception) and attractiveness (an aspect of
assessment) of a given interactive system separately [85].
During evaluation, the pairs of complementary adjectives
are clustered into four groups, each associated with a dif-
ferent aspect of quality. Pragmatic quality (PQ) is defined as
the perceived usability of the interactive system, which is
the ability to assist users to reach their goals by providing
utile and usable functions [86]. The attractiveness (ATT)
quantizes the overall appeal of the system [87]. The hedonic
quality (HQ) [88] is separable into hedonic identity (HQ-I)
and hedonic stimulus (HQ-S). HQ-I focuses on a user’s
identification with the system and describes the ability of
a product to communicate with other persons benefiting
the user’s self-esteem [89]. HQ-S describes the perceived
novelty of the system. HQ-S is associated with the desire to
advance ones knowledge and proficiencies. The clustering
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into these four groups for the 28 word pairs are defined as
depicted in Tab. 2.

For each participant, the order of word pairs and order
of the two elements of each pair are randomized prior to
the survey’s execution. A bipolar [90] seven-point Likert
scale is presented to the subjects to express their relative ten-
dencies toward one of the two opposing statements (poles)
of each expression pair, where index three denotes the
neutral element. For the questionnaire’s evaluation for sub-
ject s ∈ {0, 1, . . . , S − 1}, each of the seven adjective pairs
i ∈ {0, 1, . . . , 6} per group g ∈ {PQ, ATT, HQ-I, HQ-S} is
assigned a score x

g
s,i ∈ {1, 2, . . . , 7} by each participant,

reflecting their tendency towards the positive of the two
adjectives. The overall ratings per group are defined in
[83] as the mean scores computed over all subjects s and
statements i, as depicted in Eq. 6. Here, S is the number of
participants in the survey.

attrakdiff(x, g) = 1

7 ⋅ S
∑
s

∑
i

x
g
s,i (6)

Therefore, a neutral participant would produce an
AttrakDiff-2 score of four. The final averaged score of each
group g ranges from one (worst) to seven (best rating).

An overall evaluation of the AttrakDiff-2 results can be
conducted in the form of a portfolio representation [86].
HQ is the mean of a system’s HQ-I and HQ-S scores. PQ
and HQ scores of a specific system and user are visualized
as a point in a two-dimensional graph. The 95 % confi-
dence interval is an estimate of plausible values for rating
scores from additional study participants, and determines
the extension of the rectangle around the described data
point in each dimension. A small rectangle area represents
a more homogeneous rating among the participants than
a larger area. If a rectangle completely lies inside one of
the seven fields with associated adjectives defined in [86],
this adjective is regarded as the dominant descriptor of
the system. Otherwise, systems can be particularized by
overlapping fields’ adjectives. If the confidence rectangles
of two systems overlap in their one-dimensional projection
on either HQ or PQ, their difference in AttrakDiff-2 scores
in regards to this dimension is not significant.

2.4 Qualitative Measures
In order to collect, normalize, and analyze visual and verbal
feedback given by the participants, a summative qualitative
content analysis is conducted via abstraction [91, 92]. The
abstraction method reduces the overall transcript material
while preserving its substantial contents by summarization.
The corpus retains a valid mapping of the recording. An es-
sential part of abstraction is the formulation of macro oper-
ators like elimination, generalization, construction, integra-
tion, selection and bundling. The abstraction of statements
is increased iteratively by the use of macro operators, which
map statements of the current level of abstraction to the
next, while clustering items based on their similarity [93].

2.5 HCI Evaluation
A user study is the most precise method for the evalu-
ation of the quality of different interactive segmentation
approaches [17]. Analytical measures as well as subjective

measures can be derived from standardized user tests [94].
From interaction data recorded during the study, the repro-
ducibility of segmentation results as well as the achievable
accuracy with a given system per time can be estimated.
The complexity and novelty of the system can be expressed
via the observed convergence to the ground truth over
time spent by the participants segmenting multiple images
each. The user’s satisfaction with the interactive approaches
is expressed by the analysis of questionnaires, which the
study participant fills out immediately after their tests are
conducted and before any discussion or debriefing has
started. The respondent is asked to fill in the questionnaire
as spontaneously as possible. Intuitive answers are desired
as user feedback instead of well-thought-out responses for
each item in the questionnaire [71].

For the randomized A/B study, individuals are selected
to approximate a representative sample of the intended
users of the final system [95]. During the study, subjects
are given multiple interactive segmentation tasks to fulfill
each in a limit time frame. The user segments all m images
provided with two different methods (A and B). All subjects
are given 2 ⋅ m tasks in a randomized order to prevent a
learning effect bias, which would allow for higher quality
outcomes for the later tasks. Video and audio data of the
subjects are recorded. Every user interaction recognized by
the system and its time of occurrence are logged.

3 EXPERIMENTS

3.1 Data Set for the Segmentation Tasks

In Fig. 7 the data set used for the usability test is de-
picted. For this evaluation, the RGB colored images are
converted to grayscale in order to increase similarity to
the segmentation process of medical images acquired from
CBCT. The conversion is performed in accordance with
the ITU–R BT.709-6 recommendation [96] for the extraction
of true luminance I ∈ Rw,h defined by the International
Commission on Illumination (CIE) from contemporary cath-
ode ray tube (CRT) phosphors via Eq. 7, where I′R ∈ Rw,h,
I′G ∈ Rw,h, and I′B ∈ Rw,h are the linear red, green, and blue
color channels of I′ ∈ Rw,h,3 respectively.

I = 0.2126 ⋅ I
′
R + 0.7152 ⋅ I

′
G + 0.0722 ⋅ I

′
B (7)

Image Fig. 7(b) is initially presented to the study partici-
pants in order to familiarize themselves with the upcoming
segmentation process. The segmentation tasks associated
with images Fig. 7(a, c, d) are then displayed sequentially to
the subjects in randomized order. The images are chosen to
fulfill two goals of the study. (1) Ambiguity of the ground
truth has to be minimized in order to suppress noise in
the quantitative data. Each test person should have the
same understanding and consent about the correct outline
of the object to segment. Therefore, clinical images can only
be utilized with groups of specialized domain experts. (2)
The degree of complexity should vary between the im-
ages displayed to the users. Image (b), depicted in Fig. 7,
of moderate complexity with regards to its disagreement
coefficient [97], is displayed first to learn the process of
segmentation with the given prototype. Users are asked
for an initial testing of a prototype’s features utilizing this

https://www.itu.int/rec/R-REC-BT.709/en
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Table 2
AttrakDiff-2 statement pairs . The pairs of complementary adjectives are clustered into four groups, each associated with a different aspect of

quality. All 28 pairs are presented to participants in randomized order.

Pragmatic quality (PQ) Attractiveness (ATT) Hedonic identity (HQ-I) Hedonic stimulus (HQ-S)
complicated, simple bad, good alienating, integrating cautious, bold
confusing, clearly structured disagreeable, likeable cheap, premium conservative, innovative
cumbersome, straightforward discouraging, motivating isolating, connective conventional, inventive
impractical, practical rejecting, inviting separates me from, brings me closer to people dull, captivating
technical, human repelling, appealing tacky, stylish ordinary, novel
unpredictable, predictable ugly, attractive unpresentable, presentable undemanding, challenging
unruly, manageable unpleasant, pleasant unprofessional, professional unimaginative, creative

(a) (b) (c) (d)

Figure 7. In the top row, image data utilized in the usability tests are
depicted. In the bottom row, the ground truth segmentations of the
images are illustrates. The image of a contrast enhanced aneurysm (a)
and its ground truth annotation by a medical expert were composed for
this study. Images (b – d) are selected from the GrabCut image database
initially created for [50].

image without any time pressure. The subsequent inter-
actions during the segmentations of the remaining three
images are recorded for each prototype and participant.
The complexity increases from (a) to (d), according to the
GTs’ Minkowski-Bouligand dimensions [98]. The varying
complexity enables a more objective and extended differ-
entiation of subjects’ performances with given prototypes.

3.2 Usability Test Setup
Two separate user studies are conducted to test all proto-
types described in Sec. 2.2, in order to keep the time for
each test short (less than 10 minutes per prototype), thus
retaining the focus of the participants, while minimizing
the occurrence of learning effect artifacts in the acquired
data. Note that the participants use this time not only
to finish the segmentation tasks, but also to familiarize
themselves with the novel interaction system, as well as to
form opinions about the system while testing their provided
interaction features. (1) The first user test is a randomized
A/B test of the semi-manual prototype (Sec. 2.2.1) and the
guided prototype (Sec. 2.2.2). Ten individuals are selected
as test subjects due to their advanced domain knowledge
in the fields of medical image processing and mobile input
devices. The subjects are given the task to segment m = 3
different images with varying complexity, which are de-
scribed in Sec. 3.1, in random order. A fourth input image of
medium complexity is provided for the users to familiarize
themselves with the ISS before the tests. As an interaction
device, a mobile tablet computer is utilized, since the final

  

Camera 1
Camera 2

Recorder
Tablet position

Camera 3

Figure 8. User testing setup for the usability evaluation of the prototypes.
In this environment, a user performs an interactive segmentation on
a mobile tablet computer while sitting. RGB cameras record the hand
motions on the input device and facial expressions of the participant.
In addition, each recognized input is recorded on the tablet device (the
interaction log).

segmentation method is intended for usage via such a
medium. The small 10.1 inch (13.60 cm ⋅ 21.75 cm) WUXGA
display and fingers utilized as a multi-touch pointing de-
vice further exacerbate the challenge to fabricate an exact
segmentation for the participants [99]. The user study envi-
ronment is depicted in Fig. 8. Audio and video recordings
are evaluated via a qualitative content analysis, described
in Sec. 2.4, in order to detect possible improvements for
the tested prototypes and their interfaces. After segmen-
tation, each participant fills out the SUS (Sec. 2.3.1) and
AttrakDiff-2 (Sec. 2.3.2) questionnaires.

(2) The second user test is conducted for the joint seg-
mentation prototype (Sec. 2.2.3). The data set and test setup
are the same as in the first user study and all test persons
of study (1) also participated in study (2). One additional
subject participated only in study (2). Two months passed
between the conduction of the two studies, in which the
former participants were not exposed to any of the proto-
types. Therefore, the learning effect bias for the second test
is neglectable.

3.3 Prediction of Questionnaire Results

The questionnaires’ PQ, HQ, HQ-I, HQ-S, ATT, and SUS
results are predicted, based on features extracted from the
interaction log data. For the prediction, a regression anal-
ysis is performed. Stochastic Gradient Boosting Regression
Forests (GBRF) are an additive model for regression anal-
ysis [100, 101, 102]. In several stages, shallow regression
trees are generated. Such a tree is a weak base learner each
resulting in a prediction error ε = b + v, with high bias b
and low variance v. These regression trees are utilized to
minimize an arbitrarily differentiable loss function each on

https://web.archive.org/web/20161203110733/http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
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the negative gradient of the previous stage’s outcome, thus
reducing the overall bias via boosting [103]. The Huber
loss function [104] is utilized for this evaluation due to its
increased robustness to outliers in the data with respect to
the squared error loss.

The collected data set of user logs is split randomly in
a ratio of 4 ∶ 1 for training and testing. An exhaustive grid
search over 20, 480 parameter combinations is performed
for each of the six GBRF estimators (one for each ques-
tionnaire result) with scorings based on an eight-fold cross-
validation on the training set.

3.3.1 Feature Definition
The collected data contains 31 samples with 216 pos-
sible features each. The 31 questionnaire results (PQ,
HQ, HQ-S, HQ-I, ATT, SUS), are predicted based on
features extracted from the interaction log data of the
four images segmented with the system. Four features
are the relative median seed positions per user and
their standard deviation in two dimensions. 22 additional
features, like the number of undo operations (#Undos)
and number of interactions (#Interactions), the overall
computation time (ΣComputation time), overall interaction
time (ΣInteraction time), elapsed real time (ΣWall time),
Final Rand index, and Final Dice score are reduced to one
scalar value each by the mean and median, over the four
segmentations per prototype and user, to obtain 48 base
features. Since these features each only correlate weakly
with the questionnaire results, composite features are added
in order to assist the model’s learning process for feature
relations. Added features are composed of one base feature
value divided by (the mean or median of) computation
time, interaction time, or elapsed real time. The relations
between those time values themselves are also added. In
total, 216 features directly related to the interaction log
data are used. In addition, a principal component analysis
(PCA) is performed in order to add 10 % (22) features with
maximized variance to the directly assessed ones to further
assist the feature selection step via GBRFs.

3.3.2 Feature Selection for SUS Prediction
For the approximation of SUS results, a feature selection
step is added to decrease the prediction error by an addi-
tional three percent points: here, after the described initial
grid search, 1 % (205) of the GBRF estimators, with the
lowest mean deviance from the ground truth, are selected
to approximate the most important features. From those
estimators, the most important features for the GBRFs are
extracted via a 1/loss-weighted feature importance voting.
This feature importance voting by 205 estimators ensures
a more robust selection than deciding the feature ranking
from only a single trained GBRF. After the voting, a second
grid search over the same 20, 480 parameter combinations,
but with a reduction from 238 to only 25 of the most
important features is performed.

4 RESULTS

4.1 Overall Usability
The result of the SUS score is depicted in Fig. 9. According
to the mapping (Fig. 6) introduced in Sec. 2.3.1, the adjective

Table 3
Relative absolute prediction errors for AttrakDiff-2 and SUS test set

samples. Predictions are computed by six separately trained Stochastic
Gradient Boosting Regression Forests (GBRFs), one for each figure of
merit. Note that each training process only utilizes the interaction log

data. Results displayed are the median values of 10
4 randomly

initialized training processes.

Relative Error ATT HQ HQ-I HQ-S PQ SUS
Mean 11.5 % 7.4 % 10.5 % 8.0 % 15.7 % 10.4 %
Median 8.9 % 6.3 % 9.4 % 6.2 % 13.7 % 8.8 %
Std 8.0 % 5.5 % 6.7 % 6.9 % 12.0 % 7.1 %

rating of the semi-manual and joint prototypes are excellent
(88 respective 82), the adjective associated with the guided
prototype is good (67).

A graph representation of the similarity of individual
usability aspects, based on the acquired questionnaire data,
is depicted in Fig. 10. Based on the Pearson correlation
coefficients utilized as a metric for similarity, the SUS score
has the most similarity to the pragmatic (PQ) and attractive-
ness (ATT) usability aspects provided by the AttrakDiff-2
questionnaire.

4.2 Pragmatic Quality

The PQ results of the AttrakDiff-2 questionnaire are illus-
trated in Fig. 11. The PQ scores for semi-manual, guided,
and joint prototypes are 88 %, 50 %, and 74 % of the maxi-
mum score, respectively. Since each of the 95 % confidence
intervals are non-overlapping, the prototypes’ ranking re-
garding PQ are significant.

The quantitative evaluation of recorded interaction data
is depicted in Fig. 12. Dice scores before the first interaction
are zero, except for the guided prototype (0.82±0.02), where
few fixed seed points had to be provided to initialize the
system. Utilizing the semi-manual prototype and starting
from zero, a similar Dice measure to the guided prototype’s
initialization is reached after about seven interactions, which
takes 13.06 ± 2.05 seconds on average. The median values
of final Dice scores per prototype are 0.95 (semi-manual),
0.94 (guided), and 0.82 (joint). The mean overall elapsed
wall time in seconds spent for interactive segmentations per
prototype are 73± 11 (semi-manual), 279± 36 (guided), and
214 ± 24 (joint). Since segmenting with the guided version
takes the longest time and does not yield the highest final
Dice scores, the initial advantage from pre-existing seed
points does not bias the top ranking of a prototype in this
evaluation.

4.3 Hedonic Quality

4.3.1 Identity and Stimulus
The AttrakDiff-2 questionnaire provides a measure for the
HQ of identity and stimulus introduced in Sec. 2.3.2. The
HQ scores for semi-manual, guided, and joint prototypes
are 72 %, 70 %, and 77 % of the maximum score, respectively.
Since the 95 % confidence intervals are overlapping for
all three prototypes, no system ranks significantly higher
than the others. An overall evaluation of the AttrakDiff-2
results is conducted in the form of a portfolio representation
depicted in Fig. 13.
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Figure 9. Results of the SUS questionnaires per prototype. Values are normalized in accordance with Eq. 5, such that 4 is considered the best
possible result for each question. The Semi-manual prototype’s SUS mean is 88, guided prototype’s mean is 67, and joint prototype’s mean SUS
score is 82.
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ATT
0.82
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0.600.73

0.86

HQ-S

0.79

0.39

0.820.39

0.58

0.38

0.52

Figure 10. Pearson correlation coefficients for the AttrakDiff-2 (blue) and
SUS (red) questionnaire results, based on the acquired questionnaire
data. The line thickness is proportionate to correlation strength of the
different aspects of quality measured.

4.3.2 Qualitative Content Analysis

A summative qualitative content analysis as described in
Sec. 2.4 is conducted on the audio and video data recorded
during the study. After generalization and reduction of
given statements, the following user feedback is extracted
with respect to three problem statements: positive usability
aspects, negative usability aspects, and user suggestions
concerning existing functions or new functions.

Feedback for multiple prototypes

1) Responsiveness: the most common statement concern-
ing the semi-manual and joint version is that the user
expected the zoom function to be more responsive and
thus more time efficient.

2) Visibility: 20 % of the participants had difficulties dis-
tinguishing between the segmentation contour line and
either the background image or the foreground scrib-
bles in the overlay mask, due to the proximity of their
assigned color values.

3) Feature suggestion: deletion of individual seed points
instead of all seeds from last interaction using undo.

Semi-manual segmentation prototype

1) Mental model: 30 % of test persons suggested clearly
visible indication whether the label for the scribble
drawn next will be foreground or background.

2) Visibility: hide previously drawn seed points, in order
to prevent confusion with the current contour line and
occultation of the underlying image.

Guided segmentation prototype
1) Responsiveness: 50 % of test persons suggested an in-

dicator for ongoing computations during their time of
waiting.

2) Control: users would like to influence the location of
new seed points, support for manual image zoom, and
fine grained control for the undo function.

Joint prototype
1) Visibility: 64 % of users intuitively found the toggle

functionality for seed labels without prior explanation.
2) Visibility: 64 % of participants suggested visible instruc-

tions for manual seed generation.

4.4 Prediction of Questionnaire Results from Log Data

The questionnaires’ results are predicted via a regression
analysis, based on features extracted from the interaction
log data. A visualization of the feature importances for the
regression analysis with respect to the GBRF is depicted
in Fig. 14. An evaluation with the test set is conducted
as depicted in Tab. 3. The mean prediction errors for the
questionnaires’ results are 15.7 % for PQ and 7.4 % for HQ.
In both cases, the error of these (first) estimates is larger but
close to the average 95 % confidence intervals of 5.5 % (PQ)
and 4.0 % (HQ) for the overall questionnaire results in the
portfolio representation.

The similarity graph for the acquired usability aspects
introduced in Fig. 10 can be extended to outline the direct
relationship between questionnaire results and recorded
features. Such a graph is depicted in Fig. 15. Notably, there
is no individual feature, which strongly correlates with one
of the questionnaire results. However, as the results of the
regression analysis in Tab. 3 depict, there is a noteworthy
dependence of the usability aspects measured by the SUS
and AttrakDiff-2 questionnaires and combinations of the
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Figure 11. Results of the AttrakDiff-2 questionnaires per prototype. A value of 7 is considered the best possible result. The Semi-manual prototype’s
AttrakDiff-2 mean is 5.46, guided prototype’s mean is 4.50, and joint prototype’s mean AttrakDiff-2 score is 5.22.
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Figure 13. AttrakDiff-2 portfolio representation, according to [86], de-
picting results from the evaluation of the semi-manual segmentation
prototype (blue), guided prototype (green), and joint prototype (red). The
rectangular areas illustrate the 95 % confidence intervals for the mean
value in each dimension. The mean intervals are 5.5 % for PQ and 4.0 %
for HQ.

recorded features. The most important features for the
approximation of the questionnaire results are depicted in
Tab. 4.

5 DISCUSSION

5.1 Usability Aspects
Altough the underlying segmentation algorithm is the inter-
active GrowCut method for all three prototypes tested, the
measured user experiences varied significantly. In terms of
user stimulus HQ-S a more innovative interaction system
like the joint prototype is preferred to a traditional one.
Pragmatic quality aspects, evaluated by SUS as well as
AttrakDiff-2’s PQ, clearly outline that the semi-manual ap-
proach has an advantage over the other two techniques. This
conclusion also manifests in the Dice coefficient values’ fast
convergence rate towards its maximum for this prototype.
The normalized median ΣWall time spent for the overall
segmentation of each image are 100 % (semi-manual), 550 %
(guided), and 380 % (joint). As a result, users prefer the
simple, pragmatic interface as well as a substantial degree of
freedom to control each iterative step of the segmentation.
The less cognitively challenging approach is preferred [26].
The other methods provide more guidance for aspects
which the user aims to control themselves. In order to
improve the productivity of an ISS, less guidance should
be imposed in these cases, while providing more guidance
on aspects of the process not apparent to the users’ focus of
attention [105].
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Table 4
The five most important features per GBRF estimator/label. Orange background colors indicate the most frequently used features in the trained
decision trees of the GBRFs. Yellow backgrounds highlight semantically similar feature pairs. The abbreviations represent the receiver operating

characteristic area under the curve (ROC AUC), logistic loss (LOG), and relative absolute area/volume difference (RAVD).

1. 2. 3. 4. 5.
ATT Mean(ROC AUC/Σwtime) Mean(Dice)/Mean(Σwtime) Mean(LOG)/Mean(Σctime) Med(OBJ TPR)/Med(Σctime) Med(Σctime)

HQ-I Mean(ROC AUC/Σwtime) PCA VAL 17 Mean(Dice)/Mean(Σwtime) Med(Med ctime)/Med(Σwtime) Mean(LOG)/Mean(Σctime)
HQ Med(Jaccard/Σctime) PCA VAL 17 Mean(ROC AUC/Σwtime) Mean(OBJ TPR/Σwtime) Mean(RAVD/Σctime)

HQ-S Mean(RAVD)/Mean(Σctime) Med(Med wtime/Σwtime) Med(LOG) Std(Relative Seed Coord H) Med(MSE)
PQ PCA VAL 16 Mean(Σotime/Σctime) Mean(Dice)/Mean(Σctime) PCA VAL 11 Med(Med ctime/Σwtime)

SUS PCA VAL 2 PCA VAL 18 Std(Relative Seed Coord H) Med(Med wtime) PCA VAL 20
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Figure 14. Relative feature importance measures from 1 % (205) of
best GBRF estimators from grid search as described in Sec. 3.3.2. The
orange rectangle on the top right highlights features added via PCA
transformation. Relative feature importance is depicted on a log scale
on the bottom.

5.2 Usability Aspects Approximation

For ATT and HQ-I, the most discriminative features se-
lected by GBRFs are the receiver operating characteristic
area under the curve (ROC AUC) of the final interactive
segmentations over the elapsed real time which passed
during segmentation (ΣWall time). The Jaccard index [106]
as well as the relative absolute area/volume difference
(RAVD) each divided by the computation time are most
relevant for HQ, respective HQ-S. The pragmatic quality’s
(PQ) dominant features are composed of final Dice scores
and time measurements per segmentation. The SUS results,
quantifying the overall usability of a prototype, is mainly
predicted based on the features with the highest level of
abstraction used. In the top 10 % (22) selected features, 45 %
of top SUS features are PCA values, as indicated in Tab. 4
and Fig. 14(top). In comparison: PQ 41 %, HQ 36 %, HQ-I
18 %, ATT 14 %, and HQ-S 9 %.

6 CONCLUSION

For sufficiently complex tasks like the accurate segmenta-
tion of lesions during TACE, fully automated systems are,
by their lack of domain knowledge, inherently limited in
the achievable quality of their segmentation results. ISS
may supersede fully automated systems in certain niches
by cooperating with the human user in order to reach the
common goal of an exact segmentation result in a short
amount of time. The evaluation of interactive approaches
is more demanding and less automated than the evaluation
with other approaches, due to complex human behavior.

However, there are methods like extensive user studies
to assess the quality of a given system. It was shown, that
even a suitable approximation of a study’s results regarding
pragmatic as well as hedonic usability aspects is achievable
from a sole analysis of the users’ interaction recordings.
Those records are straightforward to acquire during normal
(digital) prototype usage and can lead to a good first es-
timate of the system’s usability aspects, without the need
to significantly increase the temporal demands on each
participant by a mandatory completion of questionnaires
after each system usage.

This mapping of quantitative low-level features, which
are exclusively based on measurable interactions with the
system (like the final Dice score, computation times, or
relative seed positions), may allow for a fully automated
assessment of an interactive system’s quality.

7 OUTLOOK

For the proposed automation, a rule-based user model
(robot user) like [27, 34] or a learning-based user model
could interact with the prototype system instead of a human
user. This evaluation scheme may significantly reduce the
amount of resources necessary to investigate each variation
of a prototype’s UI features and segmentation methodolo-
gies. An estimate of a system’s usability can therefore be
acquired fully automatically with dependence only on the
chosen user model. In addition, the suitable approximation
of a usability study’s result can be used as a descriptor,
i. e. feature vector, for a user. These features can be utilized
for a clustering of users, which is a necessary step for the
application of a personalized segmentation system. Such an
interactive segmentation system might benefit from prior
knowledge about a user’s preferences and input patterns in
order to achieve accurate segmentations from less interac-
tions.
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Figure 15. Features from user interaction logs (green) correlated with SUS (red) and AttrakDiff-2 (blue) questionnaire results. Bold feature names
highlight top five most important features with regards to GBRFs. Only relations with a Pearson correlation coefficient abs(c) > 0.5 and p < 0.05 are
displayed. Note that this visualization is an extension to Fig. 10.
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APPENDIX

EXAMPLE FOR SUS EVALUATION (EQ. 5)
The result of the SUS survey is a single scalar value, in
the range of zero to 100 as a composite measure of the
overall usability. The score is computed according to Eq. 5,
as outlined in [71], given S participants, where xSUS

s,i is the
response to the statement i by subject s.

sus(x) = 2.5

S
∑
s

[ ∑
odd i

x
SUS
s,i + ∑

even i

(4 − x
SUS
s,i ) ]

Let S = 3 participants answer the 10 questions (listed in
Sec. 2.3.1) of the SUS questionnaire as follows:

x
SUS

=

»»»»»»»»»»»»»

xSUS
0

xSUS
1

xSUS
2

»»»»»»»»»»»»»
=

»»»»»»»»»»»»

0 1 2 3 4 0 1 2 3 4
1 2 3 4 0 1 2 3 4 0
2 3 4 0 1 2 3 4 0 1

»»»»»»»»»»»»
,

where xSUS
s are rows in matrix xSUS. Then:

sus(x) = 2.5
3
⋅ ((0 + 3 + 2 + 1 + 4 + 4 + 1 + 2 + 3 + 0)+

(1 + 2 + 3 + 0 + 0 + 3 + 2 + 1 + 4 + 4)+
(2 + 1 + 4 + 4 + 1 + 2 + 3 + 0 + 0 + 3))

In this case, sus(x) = 50. Note that the factor 2.5 in Eq. 5
normalizes the SUS score to a value 0 ≤ sus(.) ≤ 100.

EXAMPLE FOR ATTRAKDIFF EVALUATION (EQ. 6)
For the questionnaire’s evaluation for subject
s ∈ {0, 1, . . . , S − 1}, each of the seven adjective pairs
i ∈ {0, 1, . . . , 6} per group g ∈ {PQ, ATT, HQ-I, HQ-S} is
assigned a score x

g
s,i ∈ {1, 2, . . . , 7} by each participant,

reflecting their tendency towards the positive of the two
adjectives. The overall ratings per group are defined in
[83] as the mean scores computed over all subjects s and
statements i, as depicted in Eq. 6. Here, S is the number of
participants in the survey.

attrakdiff(x, g) = 1

7 ⋅ S
∑
s

∑
i

x
g
s,i

Let S = 3 participants fill in the 28 choices (listed in Tab. 2)
of the AttrakDiff-2 questionnaire as follows, where xg

s are
rows in matrix xg:

Group PQ:

x
PQ
=

»»»»»»»»»»»»»»

x
PQ
0

x
PQ
1

x
PQ
2

»»»»»»»»»»»»»»
=

»»»»»»»»»»»»

1 2 3 4 5 6 7
2 3 4 5 6 7 7
3 4 5 6 7 7 7

»»»»»»»»»»»»
Group ATT:

x
ATT

=

»»»»»»»»»»»»»

xATT
0

xATT
1

xATT
2

»»»»»»»»»»»»»
=

»»»»»»»»»»»»

2 3 4 5 6 7 7
3 4 5 6 7 7 7
4 5 6 7 7 7 7

»»»»»»»»»»»»
Group HQ-I:

x
HQ-I

=

»»»»»»»»»»»»»»

x
HQ-I
0

x
HQ-I
1

x
HQ-I
2

»»»»»»»»»»»»»»
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»»»»»»»»»»»»

3 4 5 6 7 7 7
4 5 6 7 7 7 7
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»»»»»»»»»»»»
Group HQ-S:

x
HQ-S

=

»»»»»»»»»»»»»»

x
HQ-S
0

x
HQ-S
1

x
HQ-S
2

»»»»»»»»»»»»»»
=

»»»»»»»»»»»»

4 5 6 7 7 7 7
5 6 7 7 7 7 7
6 7 7 7 7 7 7

»»»»»»»»»»»»
After evaluation via Eq. 6:

attrakdiff(x, PQ) = ((1 + 2 + 3 + 4 + 5 + 6 + 7)+
(2 + 3 + 4 + 5 + 6 + 2 ⋅ 7)+
(3 + 4 + 5 + 6 + 3 ⋅ 7)) / 21

attrakdiff(x, ATT) = ((2 + 3 + 4 + 5 + 6 + 2 ⋅ 7)+
(3 + 4 + 5 + 6 + 3 ⋅ 7)+
(4 + 5 + 6 + 4 ⋅ 7)) / 21

attrakdiff(x, HQ-I) = ((3 + 4 + 5 + 6 + 3 ⋅ 7)+
(4 + 5 + 6 + 4 ⋅ 7)+
(5 + 6 + 5 ⋅ 7)) / 21

attrakdiff(x, HQ-S) = ((4 + 5 + 6 + 4 ⋅ 7)+
(5 + 6 + 5 ⋅ 7)+
(6 + 6 ⋅ 7)) / 21
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In this case, attrakdiff(x,PQ) = 4.81,
attrakdiff(x,ATT) = 5.52, attrakdiff(x,HQ-I) = 6.10,
and attrakdiff(x,HQ-S) = 6.52.
The confidence intervals conf(.) can then be extracted via
the percent point function ppf(.) (also called quantile func-
tion or inverse cumulative distribution function) for the
selected 95 % confidence interval.

z = ppf(0.95 ⋅ 0.5) = 1.95996

conf(x, g) = mean(xg) ± z ⋅ std(xg)√
7 ⋅ S

Note that mean(.) and std(.) flatten the input matrix
to a vector first, such that mean and standard deviation
are computed from a list of values and the outcome is
one scalar value per function. The confidence intervals
for the example data are conf(x,PQ) = 4.81 ± 0.81,
conf(x,ATT) = 5.52 ± 0.68, conf(x,HQ-I) = 6.10 ± 0.53,
and conf(x,HQ-S) = 6.52 ± 0.36.
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