

FACULTY OF ENGINEERING

Interactive CNN Robot User Investigation for Medical Image Segmentation

Mario Amrehn¹, Maddalena Strumia², Markus Kowarschik², and Andreas Maier^{1,3}

¹ Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany

² Siemens Healthineers AG, Forchheim, Germany

³ Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany

Introduction

Interactive image segmentation (ISS) bears the advantage of correctional updates to the current segmentation mask when compared to fully automated systems.

IIS is especially useful for **guided inter-operative medical image processing** of a single patient.

Our Approach

Incorporate human-computer **interaction** (HCI) data as additional input for segmentation into **neural networks**. We simulate this HCI data during training with SOTA user models, also called **robot users**, which aim to act similar to real users given interactive image segmentation tasks.

Experiments & Results

We analyze the influence of chosen **robot users**, which mimic different types of users and scribble patterns, on the segmentation quality. Networks trained with robot users with the **most spread out seeding patterns** generalize well during inference with other robot users.

Methods

Dense Image Segmentation CNN

Schematic convolutional neural network topology with skip-connections. The input channels include foreground (FG) and background (BG) seed information. Before each convolution, batch normalization (BN) is applied. Dense outcome segmentation mask of size 256² pixels (green).

Seed Generation via Robot User

Results

Multiple Robot User Seed Placement Patterns

Prediction Outcome of Personalized CNNs for other Robot Users

	- kohli12 29 - rand 05	יםי	- rand_gt_01 - rand_gt_02	- wang17_01	- wang17_02	- wang1/ 03	- xu16_01	$- xu16_02$	$- xu16_{-03}$	- Xu16_04	- xu16_06	- xu16_07	- xu16_08	- xu16_09	- xul6 10	- Xul6_11	• xul6_12	- xul6_13	- xu16_14	- xu16_15	- xu16_16	- xu16_17
m(kohli12 29)								t.	the second se			t.				h	h	h	h	┢	h	
m(kohli12_29) m(rand_05)								_														
m(rand gt 00)																						
m(rand_gt_01) m(rand_gt_02) m(wang17_00) m(wang17_01)																						
m(rand_gt_02)								-														
m(wang17_00)						- 1																
m(wang17_01)																	_					

- Segmentations' Dice scores in each of the 27 \times 27 cells,
- given a trained segmentation model m(.) (row) and a robot user's (column) test seeds as input.

A robot user bases its seed placement decision process on up to five different inputs (gray): input image, previous foreground and background seeds, current segmentation mask, and ground truth segmentation mask. The outcome of a robot user system is a new set of proposed seed points (green).

Investigated Rule-based Robot Users

- **Random Sampling (rand)** Seeds are placed at random. $r_{rand} = 10\%$ of seeds are drawn with the label inverted i. e. are misplaced.
- **Random sampling from GT (rand_gt)** $r_{rand} = 0$ %. Number of seeds per interaction is $n_{rand_gt} \in \{1, 5, 10\}$.
- Kohli et al. (kohli12) [1, 2] Uses the segmentation image and GT to place one seed point in the center of largest, wrongly labeled image area.
- **Xu et al. (xu16) [3]** Samples $f_{xu16} \in \{1, 5, 10\}$ FG and $b_{xu16} \in \{1, 5, 10\}$ BG seed points at random constrained by a minimum distance to established seeds. BG seeds are either sampled inside a margin around the object's contour, or in the entire BG.
- Wang et al. (wang17) [5, 4] Places seeds at random on falsely labeled image areas (similar to *kohli12*, but not limited to the center). Small

- Higher Dice scores are depicted as lighter shades of gray.
- Each model m(i) was trained beforehand only on robot user i's seeding training data.

Conclusions & Outlook

- CNNs trained with rule-based robot users to place seeds almost at random (*rand*, *rand_gt*, *xu16*) yield similar segmentation results when other user input patterns are utilized during inference.
- Robot user input with more distinct seeding patterns like wang17 generates trained networks which are better adjusted to their seeding, but do not generalizing well to other input patterns.
- → Therefore, it is a necessity to train on personalized seeding patterns formalized as individual robot users, where a high similarity to the input patterns of the real user operating the system is imperative.

areas are ignored with threshold $t_{wang17} \in \{10, 20, 30, 40\}$ in pixels.

References

[1] P. Kohli, H. Nickisch, C. Rother, and C. Rhemann, "User-centric learning and evaluation of interactive segmentation systems," *IJCV*, 2012.

[2] J. H. Liew, et al., "Regional interactive image segmentation networks," ICCV, 2017.

[3] N. Xu, *et al.*, "Deep interactive object selection," *CVPR*, 2016.
[4] M. P. Amrehn, *et al.*, "UI-Net: Interactive artificial neural networks for iterative image segmentation based on a user model," *VCBM*, 2017.

[5] G. Wang, *et al.*, "DeepIGeoS: a deep interactive geodesic framework for medical image segmentation," *TPAMI*, 2018.

[6] V. Vezhnevets and V. Konouchine, "GrowCut: Interactive multi-label ND image segmentation by cellular automata," *Graphicon*, 2005.

Contact

Mario Amrehn

Pattern Recognition Lab Friedrich-Alexander University Erlangen-Nürnberg (FAU) Erlangen, Germany 7 +49 9131 85 27826

+49 9131 85 27826 mario.amrehn@fau.de Acknowledgements

Session 1 – Segmentation Monday, 2019-03-18 T 13:45

SIEMENS Healthineers

The authors gratefully acknowledge the support of Siemens Healthcare GmbH, Forchheim, Germany. Concepts and information presented in this paper are based on research and are not commercially available.

