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Abstract. Interactive image segmentation bears the advantage of cor-
rectional updates to the current segmentation mask when compared to
fully automated systems. Especially in the field of inter-operative med-
ical image processing of a single patient, where high accuracies are an
uncompromisable necessity, a human operator guiding a system towards
an optimal segmentation result is a time-efficient constellation benefit-
ing the patient. There are recent categories of neural networks which can
incorporate human-computer interaction (HCI) data as additional input
for segmentation. In this work, we simulate this HCI data during training
with state-of-the-art user models, also called robot users, which aim to
act similar to real users given interactive image segmentation tasks. We
analyze the influence of chosen robot users, which mimic different types
of users and scribble patterns, on the segmentation quality. We conclude
that networks trained with robot users with the most spread out seeding
patterns generalize well during inference with other robot users.

1 Introduction

The trans-catheter arterial chemoembolization (TACE) [1] is a minimally inva-
sive procedure to treat hepatocellular carcinoma (HCC). During the treatment,
volumetric cone-beam C-arm computed tomography (CBCT) [2] images of the
patient’s abdomen are generated. The physician maximizes the efficacy of the op-
eration selecting all cancerous cells while reducing the toxicity of the treatment
by omitting surrounding healthy tissue during lesion segmentation. Therefore, a
crucial step during the intervention is the accurate segmentation of liver lesions
in order to precisely isolate the conspicuous tissue’s cells from the oxygen supply
of the liver.

In recent years, fully-automatic segmentation systems based on convolutional
neural networks (CNN) like the U-net [3] outperformed more traditional learning
based approaches to medical image segmentation. In 2017, interactive CNNs were
published [4,5] which, to some degree, include guidance from a human user for
their final segmentation result. The guidance is provided by post-processing the
current segmentation result. In that year, Amrehn et al. [6] and Wang et al. [7]
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demonstrated the potential of rule-based seed drawing robot users and feasibility
of a combination of interaction input data with traditionally fully-automatic
CNN segmentation systems.

All of these systems model the user in a specific way via a set of fixed rules.
Kohli et al. [8] described a way to realistically simulate some groups of users.
However, most often, the similarity analysis of a simulated user to actual humans
interacting with the system is omitted when a new interactive method with
its custom interacting robot user are presented. In this work, we quantify the
similarity between proposed robot users and illustrate their differences.

2 Materials and Methods

The network topology used is a fully convolutional neural network based on
U-net [3] with 3.12 · 107 trainable parameters as depicted in Fig. 1. The proposed
network utilizes three input channels, with size of 2562 pixels each, to encode
gray-valued image data as well as user provided seed information. Convolution
operations are performed utilizing 3× 3× n kernels, where n ∈

{
26, 27, 28, 29, 210

}
depending on the depth of the network. A 2× 2 neighborhood is used for pool-
ing. Three input channels encode the gray-valued C-arm CT image data as well
as user provided seed information. The seeding channels consist of background
respective foreground seeds transformed by the Euclidean distance function. A
distance transform as a pre-processing step on the sparse seed images decreases
the necessary size of the network’s minimum receptive field, which is especially
important for its initial layers to capture the seed information as context to the
gray-valued input image [9]. Utilizing a distance transform, the seed formation
is spread over the whole input channel and seed information is preserved even
with small kernel sizes.

The robot user mimics the interaction of a real user. It is assumed, that
a human user sets additional seed points during segmentation based on the
structures seen on the gray-valued input image, the previously set foreground
and background seeds, the current segmentation mask image, as well as a notion
of the segmentation ground truth which the physician has from their domain

Fig. 1. Schematic representation of a U-net convolutional neural network topology. The
input channels include foreground (FG) and background (BG) seed information. Skip-
connections are depicted as links in gray. Before each convolution, batch normalization
(BN) is applied. The outcome is a dense segmentation mask of size 2562 pixels (green).
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knowledge. These five inputs are also commonly used for a rule-based robot
user, as depicted in Fig. 2. In the following analysis, five different robot users
are evaluated.

Random Sampling Over Whole Image (rand) Seeds are placed at random
on the seed input channels. Here, a fraction of rrand = 0.1 of seeds are drawn
with the label inverted i. e. these seeds are misplaced.

Random Sampling From GT (rand gt) This robot user samples seed point
positions at random and copies labels from the ground truth. Note that rand gt
equals rand with rrand = 0.0. Here, the number of seeds per interaction is
nrand gt ∈ {1, 5, 10}.

Robot User by Kohli et al. (kohli12) Proposed in [8] and selected for user
simulation in [5], this robot user utilizes the current segmentation image and
the ground truth in order to place one seed point in the center of the largest,
wrongly labelled image area.

Robot User by Xu et al. (xu16) The robot user proposed in [4] samples
fxu16 ∈ {1, 5, 10} foreground and bxu16 ∈ {1, 5, 10} background seed points at
random constrained by a minimum distance to established seeds (such that
2 ≤ nxu16 ≤ 20). Possible background seed locations are either sampled inside
a 20 pixel wide margin around the GT object’s contour line (called strategy 1 in
the original paper), or in the entire background region (strategy 2 ), depending
on parameter sxu16 ∈ {1, 2}.

Robot User by Wang et al. (wang17) In [7,6] the robot user utilized places
seed points at random on wrongly labeled image areas. This behaviour is similar
to kohli12 , but not limited to the center of the image areas. Whether a region
is ignored during placement of additional seed points is determined by an area
size threshold twang17 ∈ {10, 20, 30, 40} in pixels.

Fig. 2. A robot user bases its seed placement decision process on up to five different
inputs (gray): the gray-valued input image, the previous foreground and background
seeds, the current segmentation mask, and the ground truth segmentation mask. The
outcome of a robot user system is a new set of proposed seed points (green).
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When training a new network with robot user interaction input, a classical
chicken or the egg causality paradox emerges. A fully trained network would be
needed in order to segment the input image. Thereafter, additional correcting
seed points may be selected by a robot user, which leads to an updated segmen-
tation result. This interaction data may be used for training the new network.
However, a fully trained network would need exactly these steps to be trained
first. Therefore, in this work, we initialize the new network with interaction train-
ing data acquired by a non-learning-based method. Here, robot user interactions
are recorded via iterative segmentation utilizing GrowCut [10]. In preliminary
experiments, we determined that segmentation methods like GrabCut, which
are more robust and therefore more independent of user input patterns do not
qualify for the proposed initialization of a new network. The GrowCut method
is chosen due to its well known tendency to benefit from careful placement of
large quantities of seed points. The figure of merit for segmentation quality is
a Dice score, also known as intersection over union (IoU), generated after each
GrowCut iteration step, as depicted in Fig. 3.

3 Experiments

The data utilized in the experiments are 2-D slices of volumetric CBCT images
of liver lesions depicting HCC. The lesions in the volumetric images are fully
annotated by medical experts. Subsequently, the image data are cropped to a
volume of interest (VOI), with voxel resolutions from 0.463 mm3 to 0.683 mm3.
All annotated lesions are smaller than 1173 mm3 which allows for a (VOI) of
2563 voxels depicting the largest lesion outlines. For training and testing, 90
slice images are drawn from the 38 3-D VOI images. 90 % of images are used for
training, 10 % for testing.

One network Mi is trained for every robot user and every parameter con-
figuration tested for a robot user as described in Sec. 2, where i ∈ [0, 27). The
quality of their segmentation outcome is analyzed via the Dice score for the cur-
rent segmentation mask with the ground truth. It is analyzed, which robot user
input patterns during training will generate networks able to generalize to other
input patterns during inference.

4 Results

For the evaluation, 27 CNN models were trained with seeding data from one
of the 27 robot user configurations each. The Dice scores for the test set are
depicted in Fig. 4. Each of the 27 models m(x) are trained only on robot user
x’s seeding training data. A mean Dice score is computed for each of the 27
trained segmentation models m(.) after segmenting the 9 test images with seed
input data from one of the 27 robot users.



CNN Robot User Investigation for Medical Image Segmentation 5

5 Discussion and Outlook

It becomes apparent from Fig. 4b), that (1) CNNs trained with robot users
based on rules to place seeds almost at random (rand , rand gt , xu16 ) yield
similar segmentation results when other user input patterns are utilized dur-
ing inference. (2) Robot user input with more distinct seeding patterns like
wang17 generates trained networks which are better adjusted to their seeding
(see Fig. 4a) wang17 ), but not generalizing well to other input patterns.

An interpretation of this result is, that when improving on randomized seeds
for training, it is not feasible to train on generalized user input patterns for all
use cases, due to (1). Therefore, it is a necessity to train on personalized seeding
patterns formalized as individual robot users (2), where a high similarity to the
input patterns of the real user operating the system is imperative.
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Fig. 3. The mean Dice scores per robot user over all input images and per interaction
is depicted. Each robot user provides seeds during interactive segmentation. A segmen-
tation’s quality is measured as Dice score after each GrowCut [10] iteration step.
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Fig. 4. (a) Each of the 27 × 27 cells represents the segmentation quality in Dice score
given a trained segmentation model m(.) (row) and a robot user’s (column) seed input
data for the test set. Each model m(x) was trained beforehand only on robot user
x’s seeding training data. In (b) the rows are sorted by sum of Dice scores per row
descending.


