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Introduction – Killer Whale (Orcinus Orca) Communication

c©Volker Barth, DeepAL

• Largest member of the dolphin family with complex and well-studied
vocal structures [1] producing three different sound types [2]:

a) Echolocation Clicks b) Whistle c) Pulsed Call

• Pulsed calls are besides whistles and echolocation clicks the most
common type of killer whale vocalization (discrete, variable, aberrant)
• Pulsed calls (call types) have sudden and patterned shifts in

frequency with a pulse repetition rate between 250 and 2,000 Hz [2]
• Various pods (socializing matrilines) have distinct vocal repertoires

(mixture of unique and shared discrete call types)→ Dialects

Motivation – Fully Unsupervised Call Type Identification

• Current understanding of killer whale vocalizations refer to the human
classified killer whale sound type catalog by Ford in 1987 [3]

a) A5 N09 b) A12 N09 c) A24 N09 d) A36 N09

• Huge inter- but also intra-pod signal variations even within one
single human-labeled call type
• Fully unsupervised multi-step machine- and data-driven approach to

address issues such as: (1) labor-intensive and missing data
annotation, (2) human perception-based classification, (3) human
error-proneness, (4) analysis of large (bioacoustic) audio archives

Methodology – Approach, Data Material, Network Models

• Approach: (1) Unsupervised killer whale feature learning using a
convolutional undercomplete ResNet18-autoencoder trained on
machine-annotated orca data, and (2) Spectral clustering of killer
whale signals utilizing compressed orca feature representations
• Orca Segmented Data (OSD): 19,211 samples (100.0 %), Training:

13,443 samples (70.0 %), Validation: 2,902 samples (15.1 %), Test:
2,866 (14.9 %) (ResNet18-based orca/noise segmenter [4, 5])
• Call Type Data: 514 samples (100.0 %), Training: 363 samples

(70.6 %), Validation: 72 samples (14.0 %), Test: 79 (15.4 %) [4]
Orca Call Type/
Corpus

N01 N02 N03 N04 N05 N07 N09 N12 N47 el whistles ns SUM

CCS 33 10 — 21 14 18 26 16 — — — — 138
CCN 36 — 56 60 — 31 70 — 33 — — — 286
EXT — — — — — — — — — 30 30 30 90
SUM 69 10 56 81 14 49 96 16 33 30 30 30 514

• Network models: (1) Orca/Noise Segmenter (CNN, 2-classes,
cross-entropy loss) [4, 5], Call Type Classifier (CNN, 12-classes,
cross-entropy loss) [4], and convol. undercomplete Autoencoder
(mean squared error loss) are all based on ResNet18 [6]

Experiments – Data Preprocessing, Training, Setup
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• Data Preprocessing: power spectrum, dB-conversion, augmentation,
linear frequency compression (256 bins), noise augmentation,
dB-normalization, subsampling/padding (1.28 s)→ 1× 256× 128
• Network Training: implemented in PyTorch, Adam optimizer,
α= 10−5, β1 = 0.5, β2 = 0.999, batch size of 32 (Segmentation/Feature
Learning) and 4 (Call Type Classification), α decay of 0.5 after 4
epochs and training stopped after 10 epochs without improvements
on the validation set
• Experimental Setup: (1) Autoencoder feature learning using the

automatic pre-segmented OSD dataset combined with a subsequent
spectral clustering (gap statistic) using 4× 16× 8 bottleneck features
of the call type dataset, (2) Identifying potential call type sub-classes
and human-misclassifications for all 514 human-labeled orca signals,
and (3) Supervised [4] vs. Unsupervised Call Type Classification

Result – Reconstructions

echo clicks whistle N09

N01 N04 N47

Result – Misclassifications

cl.a) N04/N09 cl.b) ns/el cl.c) N07/N09

cl.d) N47/N09 cl.e) N03/ns cl.f) el/N07

Result – Sub-Call Types

N04 cluster N07 cluster N09 cluster

N01 cluster N03 cluster N47 cluster

Result – Superv./Unsuperv.

hypothesis [4] hypothesis

Conclusion and Future Work

• Robust analysis of large datasets, no labeled data required, less
susceptibility to human errors, human perception eliminated,
derivation of new, previously unknown (sub-)call types
• Process entire Orchive [7] to derive totally new insights/possibilities
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