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Abstract

Call type classification is an important instrument in bioacoustic
research investigating group-specific vocal repertoire, behav-
ioral patterns, and cultures of different animal groups. There is a
growing need using robust machine-based techniques to replace
human classification due to its advantages in handling large
datasets, delivering consistent results, removing perceptual-
based classification, and minimizing human errors. The cur-
rent work is the first adopting a two-stage fully unsupervised
approach on previous machine-segmented orca data to iden-
tify orca sound types using deep learning together with one
of the largest bioacoustic datasets — the Orchive. The pro-
posed methods include: (1) unsupervised feature learning using
an undercomplete ResNetl8-autoencoder trained on machine-
annotated data, and (2) spectral clustering utilizing compressed
orca feature representations. An existing human-labeled orca
dataset was clustered, including 514 signals distributed over
12 classes. This two-stage fully unsupervised approach is an
initial study to (1) examine machine-generated clusters against
human-identified orca call type classes, (2) compare supervised
call type classification versus unsupervised call type clustering,
and (3) verify the general feasibility of a completely unsuper-
vised approach based on machine-labeled orca data resulting in
a major progress within the research field of animal linguistics,
by deriving a much deeper understanding and facilitating totally
new insights and opportunities.

Index Terms: orca, call type, unsupervised, deep learning,
clustering

1. Introduction

Call type classification is an important instrument to identify
species and to track movements of animal groups and there-
fore to identify habitat usage. It is also important to further
study group-specific vocal repertoire, behaviors, and cultures of
different animal groups. With an increasing amount of passive
acoustic monitoring data comes a growing need for using robust
automatic techniques to replace human classification. Apart
from processing large amounts of data in short time, those tech-
niques offer advantages of delivering consistent results and are
replicable in subsequent studies. The largest member of the dol-
phin family - the Orca (Orcinus Orca) - is one of several species
with relatively well-studied and complex vocal cultures [1]. The
acoustic behavior of killer whales has been extensively studied
on the resident fish-eating orcas in the Northeast Pacific. Be-
sides echolocation clicks and whistles, orcas produce a number
of different, group-specific, and social sounds with distinct fre-
quency contours - the pulsed calls - being the most common and
intensively studied vocalization of killer whales.
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Figure 1: Spectral visualization of the orca vocal repertoire

Figure 1 visualizes those three different and characteristic orca
sound types. Pulsed calls are classified into discrete, variable,
and aberrant calls. Sudden and patterned shifts in frequency can
be observed, based on the pulse repetition rate, usually between
250 and 2000 Hz [2]. Resident orcas live in stable matrilin-
eal units. Matrilines often traveling together to socialize regu-
larly form subpods and pods [3, 4, 5]. Distinct vocal repertoires
of different pods consists of a mixture of unique and shared
(between matrilines) discrete call types and are referred to as
dialects.

b) A12N09  ¢) A24N0O9  d) A36 NO9

Figure 2: Spectrogram NO9 human-labeled call types (red = ref.
NO9 call, AS pod; green = NO9 calls, same/different pods)

Each of those pod-specific dialects is made of up to 20 types
of discrete calls. The Northern Residents’ vocal repertoire of
discrete calls consists of more than 40 types [6, 5]. These types
have been classified by humans from listening and looking at
their signal spectra. The current understanding of orca commu-
nication and vocalization is based on the call types which were
established by Ford in 1987 [5], including also various whistle
types (stereotyped and ultrasonic). Group-specific vocal signals
are believed to play an important role in maintaining contact
among members or coordinate group activities, especially when
groups are dispersed and when visual signals can only be used
in short distance communication [2]. Call structure variations
can be observed in various shared call types [7]. Obviously
there exist huge inter- but also intra-pod signal variations even
within one single human-labeled call type. Figure 2 illustrates
the wide spectral variety within a given NO9 call class, recorded
from the AS pod, compared to NO9 calls of the same pod (Fig-
ure 2a) and other pods (Figure 2b-d). All these call types were
generated based on human perception. By looking at the dif-
ferent versions of calls classified as N09, a valid assumption is
that many potentially meaningful details and differences have
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been overlooked, due to missing tools in order to compare hun-
dreds and thousands of similar calls. By training machine algo-
rithms to analyze orca calls at a finer level of detail, it is possible
to detect either new/updated classes, and/or sub-classes of call
types, human-misclassifications, and better understand poten-
tially meaningful differences within the orca communication.
The current study explores the possibility of using a multi-step
fully unsupervised approach including feature learning based on
automatic machine-segmented orca data and call type clustering
using deep learning methods to identify machine-generated call
type clusters sharing the highest degree of similarity, as a way to
automatically generate different call type labels. The proposed
method is intended to address issues such as: (1) data annota-
tion (labeled versus unlabeled data), (2) classification based on
human perception, (3) human error-proneness, (4) data-driven
technique to analyze large (bioacoustic) audio corpora in order
to derive totally new insights. By comparing the data-driven
call type clusters with human classifications, it demonstrates
the prospect of using unsupervised clustering to classify animal
vocalizations and to eliminate the blind spots in human percep-
tion. The whole unsupervised pipeline was evaluated by using
a human-labeled call type dataset (section 4). Moreover, we
compared the unsupervised cluster outputs against our previous
supervised classification result in [8].

2. Related Work

Salamon et al. [9] improved species classification of 43 bird
species by their flight calls using spherical k-means cluster-
ing for feature learning to derive a codebook from the train-
ing data, a subsequent feature-encoding, followed by a final
supervised SVM classification. Brown et al. [10] used Dy-
namic Time Warping and k-means to cluster 57 captive killer
whale vocalizations resulting in 9 distinct clusters compared
against human classified call types. Picot et al. [11] used an
algorithm consisting of 4 steps — signal processing, segmenta-
tion, pattern recognition, and clustering — to unsupervised clas-
sify intonations of sound units of the same humpback whale
song. Rickwood and Taylor [12] utilized a fully unsupervised
approach containing signal identification (power-spectrogram),
feature extraction (time-varying power spectra), and unsuper-
vised clustering (vector quantization plus HMMs) to classify
humpback song units. Pace et al. [13] classified humpback
subunits via segmentation (energy detector) and clustering on
MFCCs. To the best of our knowledge, there is no study uti-
lizing deep learning in a fully unsupervised approach includ-
ing feature learning on machine-labeled data and clustering in
order to derive/identify machine-learned orca communication
patterns/vocalizations.

3. Methodology

Convolutional Neural Network (CNN) — CNN is an end-to-
end deep learning technique in order to efficiently handle, pro-
cess, and compress the complexity of 2-D input data (e.g. spec-
trograms) [14]. CNNs implement the traditional principle of
pattern recognition — feature learning done by convolutional
layers and classification handled via fully connected layers [14].
Convolutional layers are characterized by (1) local receptive
fields, (2) weight sharing, and (3) sub-sampling (pooling) [14].
Hidden units (features), stored in one feature map (channel),
are generated via sliding a convolutional kernel (k xk constant
shared-weight matrix) at a given hop size (stride) over the whole
input shape, while extracting at each of the kernels local recep-
tive fields one feature value (linear operation) [14]. In addition
to the core concepts of this network architecture — convolution
and pooling — CNNs embed activation layers (e.g. Rectified
Linear Unit [15] layer) and normalization layers (e.g. batch nor-
malization [16] layer). The type of activation and normalization

layers, as well as the sequential layer ordering (convolutional,
normalization, activation, and pooling layers), depends on the
type of application and data.

Residual Networks (ResNet) — In order to build and train
deeper neural network models He et al. [17] invented a resdiual
learning framework to counteract the degradation problem. In-
creasing the network depth leads to an accuracy decrease after
the saturation region due to higher training errors compared to
shallower counterparts [17]. A network architecture which is
not directly learning an underlying mapping H (z) with respect
to a given input x but rather optimizing the residual mapping
F(z) = H(x) — = is called residual network (ResNet) [17].
For a more detailed information see [17]. In this study we uti-
lized the ResNet18 architecture [17].

Autoencoder — In order to learn adequate and robust feature
representations we trained an undercomplete autoencoder to de-
rive a compressed feature representation based on the original
input data. An input sample x is encoded via an encoder func-
tion e to a hidden representation h = e(x), whereas a decoder
function d maps the latent code & to its reconstruction/output
r = d(h) [18]. Thus, an autoencoder acts as a copy operation of
the input to its output characterized by = = d(e(x)), while us-
ing several constraints within the compression/decompression
process, e.g. dimensionality reduction to learn a compressed
embedding h while trying to minimize the loss L(z,d(e(x)))
referring to dissimilarity [18].

Clustering — In this work we used spectral clustering with a
radial basis function to create the affinity matrix. For a more
detailed information we refer to [19].

4. Data Basis

Orca Segmented Data (OSD) — Our ResNetl8-based seg-
menter [8] was used to segment audio tapes from the Orchive
[20, 21]. The Orchive comprises ~~20,000 h of orca underwa-
ter recordings, captured via stationary hydrophones in northern
British Columbia (Hanson Island) over 25 years (1985-2010).
The data is available upon request only. Orca sound events out
of 238 (=192 h) noise-heavy, unlabeled, and randomly chosen
Orchive tapes, have been automatically segmented by our super-
vised trained segmenter. The machine-generated OSD dataset
includes 19,211 orca segments summing up to 34.47h. The
OSD corpus was split into a training (13,443 samples, 70.0 %),
validation (2,902 samples, 15.1 %), and test set (2,866 samples,
14.9 %), which was used for fully unsupervised training of the
autoencoder (Figure 3). We ensured that none of the segmented
Orchive tapes, used for feature learning, were part of the call
type data corpus.

Call Type Data — According to our previous work [8] we
used the same call type data corpus consisting of three distinct
catalogs: (1) Orcalab call type catalog (CCS), (2) Ness call type
catalog (CCN), and (3) an extension catalog (EXT). The CCS
dataset includes 33 NO1, 10 NO2, 21 N04, 14 NO5, 18 NO7,
26 N09, and 16 N12 orca call types summing up to 138 call
types distributed over 7 classes [8]. The CCN corpus contains
36 NO1, 56 N03, 60 N04, 31 NO7, 70 N0O9, and 33 N47 orca call
types summarized to 286 shared over 6 classes [8]. Both cata-
logs lead to 9 various call types and 424 samples. The EXT data
pool includes 30 echolocation clicks, 30 whistles, and 30 noise
files summing up to 90 samples over 3 classes [8]. EXT was
added to get closer to a real-world scenario. In total, our entire
call type corpus comprises 514 orca sound events, distributed
over 12 various classes. To ensure comparability this study used
the same train (363 samples, 70.6 %), validation (72 samples,
14.0 %), and test (79 samples, 15.4 %) split of the overall call
type dataset as in [8]. Despite the unbalanced label distribution
within the distinct call type catalogs we ensured that every call
type is present in every data partition.



5. Network Models

Segmenter — In our previous work [8] we described a super-
vised trained ResNet18-based orca/noise segmenter achieving a
test set accuracy of 95.0 % together with ~94.0 % true postive
rate and ~4.0 % false positive rate. In order to avoid losing too
much resolution at the early stages we removed the 3x3 (stride
2) max pooling layer from the first residual layer [8]. The seg-
menter uses the same architecture as the residual encoder path
of our autoencoder visualized in Figure 3, combined with a sub-
sequent 512-D latent layer mapping the global-average-pooled
multi-channel features to the orca/noise output layer.

Call Type Classifier — In order to compare unsupervised call
type clustering versus supervised call type classification we
used our call type classifier of [8], which achieved a mean test
accuracy of 87.0 % on the 79 samples of the call type data test
set. Our call type classifier utilized the same, slightly modified
ResNet18 architecture than our segmenter [8], with the only dif-
ference of mapping the latent layer output to a 12-D output layer
overcoming our 12-class problem.

Convolutional Undercomplete Autoencoder — In this study
we used a ResNetl8-based convolutional undercomplete au-
toencoder visualized in Figure 3. As bottleneck layer we ap-
plied 2 convolutional layers using a 1x1 kernel (stride 1) for
compressing and decompressing 512 x 16 x 8 features of the last
residual layer to 4x 16x 8 features and back. Moreover, the de-
coder path slightly differs from the encoder path regarding the
penultimate residual layer dimensionality. For upsampling we
used transposed convolutions. However, transposed convolu-
tions with a stride of 2 lead to potential reconstruction artifacts,
which can not be regularized after the last layer. Thats why the
original input dimensionality of 256 x 128 was already reached
within the second to last residual layer. To correct as many arti-
facts as possible we used a transposed convolution with a stride
of 1 in the last residual layer (Figure 3).

6. Data Preprocessing and Training

Data Preprocessing — All our proposed models (section 5)
utilized the same data preprocessing pipeline. An audio file
was converted to a mono signal and resampled at 44.1 kHz
[8]. A subsequent short-time Fourier transform (STFT), us-
ing a window length of 4,096 (= 100 ms) and hop-size of 441
(= 10 ms) samples, was processed and the output transformed
to a power spectrogram converted to decibel scale. Now var-
ious sequential ordered augmentation techniques, all using a
uniform distribution [8] were performed: (1) intensity (fac-
tor -6—+3dB), (2) pitch (factor 0.5-1.5), and (3) time (fac-
tor 0.5—-2.0) augmentation [8], followed by a linear frequency
compression (fmin=500Hz, fmax =10kHz) resulting in 256
fequency bins. Moreover, pitch and time augmented charac-
teristic noise files were added to the spectrogram leading to a
SNR between -3 and +12 dB [8]. Noise augmentation was only
processed during training the segmenter (noise robust) and clas-
sifier (limited data) but not the autoencoder, in order to not over-
represent noise. During training each spectral input file was
randomly augmented within each epoch. The resulting train-
ing spectrogram was normalized via dB-normalization (-100—
+20dB). Finally a 1.28 s randomly chosen segment of the nor-
malized spectrogram (zero-padding if too short) was extracted
resulting in a trainable clip of 256128 input size [8].

Training — All our models were implemented and trained in
PyTorch [22]. They all use an Adam optimizer with an ini-
tial learning rate of 1075, B1=0.5, 82=0.999, and learning
rate decay of 0.5 after 4 epochs without any improvements on
the validation set (accuracy for segmentation/classification, loss
for feature learning). The segmenter (cross-entropy loss) was
trained on the dataset in [8], the autoencoder (mean squared

error (MSE) loss) on the OSD corpus, and the call type classi-
fier (cross-entropy loss) on the call type training set (section 4).
The OSD corpus, used for feature learning does not include any
tapes from the CCS, CCN, and EXT dataset. For segmentation
and feature learning a batch size of 32 was utilized, whereas for
call type classification we used a batch size of 4 [8]. The train-
ing process for all our models was canceled after 10 epochs
without any progress on the validation set [8].

7. Experiments

In our first experiment we performed and evaluated our two-
stage fully unsupervised pipeline. Initially the automatic pre-
segmented OSD dataset was utilized to train our autoencoder
(Figure 3) in a fully unsupervised way, in order to learn mean-
ingful and compressed orca feature representations. The sec-
ond step was a fully unsupervised spectral clustering [19] of
the entire call type dataset (section 4). Therefore, we used
the 4x16x8 (512-D) learned feature representations of the au-
toencoders bottleneck layer (Figure 3) as cluster input. In this
experiment we clustered all 514 orca sound samples from the
call type data corpus. The number of clusters were calculated
via processing the gap statistic [23]. The computation of gap
statistics and downstream clustering was done iteratively and
recursively for each cluster until the gap statistic of a cluster no
longer exceeded a threshold of > 0.5 or the amount of samples
in a cluster was less than the call type dataset size (514 samples)
divided by the number of clusters from the first clustering run.
As aresult we ended up with a total number of 29 clusters. In a
second experiment we examined the 29 cluster outputs referring
to potential call type sub-classes and human-misclassifications
for all 514 human-labeled orca sound samples. In our last ex-
periment we only clustered the 79 test samples of our call type
test set and forced the cluster algorithm to 12 output clusters, in
order to compare it with our previous supervised classification
result [8] by visualizing both confusion matrices.

8. Results and Discussion
8.1. Visualization Autoencoder Reconstructions

For a feasibility analysis of such a fully unsupervised pipeline,
it is imperative to have an upstream robust orca sound seg-
mentation, an adequate downstream feature learning and a sub-
sequent clustering. Figure 4 shows the spectral reconstruc-
tion results of the autoencoder, fully unsupervised trained on
the machine-segmented output data (OSD). The reconstruction
samples (Figure 4) are examples of the call type dataset and
were consequently not part of the autoencoder training. The au-
toencoder was trained on pre-segmented orca signals and thus
reconstructs/reflects the orca data much better than the noise.

echo (orig. vs. rec.) whistle (orig. vs. rec.) NO9 (orig. vs. rec.)

/_{- :"\h>

NO1 (orig. vs. rec.) NO4 (orig. vs. rec.) N47 (orig. vs. rec.)

Figure 4: Original and reconstructed spectrograms of various
orca sounds using the ResNetl8 undercomplete autoencoder.

Figure 4 shows that the autoencoder learns the different orca
signal variations (overlaying harmonics, clicks, etc.) in de-
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Figure 3: Network architecture of the ResNet18 undercomplete autoencoder.

tail, rather than reconstructing the noise parts (blurred, as a re-
sult of the standard mean squared error (MSE) loss function
[24]), which is a significant indication of generating automatic,
very robust orca segmentation results, leading to highly valu-
able compressed feature representations as input for the spectral
clustering.

8.2. Human Misclassifications and Call Type Sub-Classes

The cluster output was verified referring to potential human
misclassifications and call type sub-classes. Figure 5 visual-
izes 6 various clusters (cl.a—cl.f), each describing two samples
of the same cluster showing very similar spectral shapes but dif-
ferent human classifications. Moreover, cluster cl.f illustrates a
common problem of having a certain call type together with an
overlaying very prominent echolocation.

cl.a) NO4 and NO9 cl.b) noise and echo cl.c) NO7 and N09

——

cl.d) N47 and N09 cl

.e) NO3 and noise  cl.f) el and NO7

Figure 5: Cluster outputs containing potential machine-
identified human misclassifications for different orca sounds.

This phenomenon leads to an uncertainty regarding a proper
classification of the relevant/interested orca sound type.
Those machine-identified and visually comprehensible exam-
ples could be an indicator for misclassifications and/or general
wrong interpretation of certain call types (NO7 vs. N09).

NO9 cluster

NO1 cluster

NO3 cluster

N47 cluster

Figure 6: Cluster outputs visualizing potential machine-
identified call type sub-classes.

Moreover, we clustered single human-labeled call type classes
(e.g. NO4) to identify potential sub-classes. Figure 6 visualizes

potential sub-classes of N04, NO7, N09, NO1, NO3, and N47.
The spectral variety of identical-labeled call types in human-
defined call type classes is clearly observed, even though we
can only show very few examples due to lack of space.

8.3. Supervised Classification vs. Unsupervised Clustering

For the comparison of supervised classifcation and unsuper-
vised clustering, we determined the number of clusters to be
12 and exclusively clustered the 79 orca samples of the call
type test set (section 4). Thus, it allows us to compare the
cluster output with the confusion matrix of our supervised clas-
sification in [8]. Despite the suboptimal cluster number, the
non-homogeneous distribution of the test labels, possible hu-
man misclassifications, and our fully unsupervised pipeline an
accuracy of ~60.0 % was achieved for the 12-class problem.
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Figure 7: Superv. Classification [8] vs. Unsuperv. Clustering

9. Conclusion and Future Work

Our proposed fully unsupervised pipeline, based on machine-
segmented orca data, has proven particularly useful for orca
call type identification due to the following reasons: (1) no la-
beled data required (2) less susceptibility to human errors (mis-
classifications) (3) robust analysis of large datasets (4) human
perception eliminated (5) accuracy of ~60.0 % on a 12-class
problem (6) deep analysis enables derivation of new, previ-
ously unknown (sub-)call types. In our future work we will
use this pipeline to process the entire Orchive (20,000 h) to de-
rive/identify highly valuable orca call type data and new, unseen
(sub-)call types, by analyzing data over 25 years in order to fa-
cilitate totally new insights and possibilities in animal research.
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