

FACULTY OF ENGINEERING

Deep Representation Learning for Orca Call Type Classification

Christian Bergler, Manuel Schmitt, Rachael Xi Cheng, Hendrik Schröter, Andreas Maier, Volker Barth, Michael Weber, and Elmar Nöth Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nuremberg Text, Speech, and Dialogue (TSD), 22nd International Conference September 11th – 13th 2019, Ljubljana, Slovenia

The Killer Whale

- Largest member of the dolphin family
- Distinct communication
 system
- Vocalization not only for mating or alarm calls also for orientation and hunting
- Orcas have well marked social behavior and have highly social interactions
- Complex social, communicative, and cognitive capacities

©Volker Barth, DeepAL

The Killer Whale during fieldwork expedition 2017/2018 in northern Vancouver Island, British Columbia, Canada

Existing Bioacoustic Archive - The Orchive

- collected by the Orcalab [2] and Steven Ness [4]
- 20,000 hours of underwater recordings by using 6 stationary hydrophones (1985–2010)
- 23,511 digitized audio tapes each ~45 min.
- Orchive Annotation Catalog (OAC) [4] comprises 15,480 orca/noise labels

The Orcalab on Hanson Island (northern Vancouver Island, British Columbia, Canada) and its recording environment

DeepAL Fieldwork Expedition - The DeepAL Fieldwork Data (DLFD) 2017/2018

- collected via a 15-meter research trimaran
- 1,007 hours of multi-channel underwater recordings
- 89 hours video footage about behavioral data
- Interdisciplinary team consisting of marine biologists, computer scientists, and psychologists

DeepAL 2017/2018 Expedition Route (British Columbia) [1]

3

Killer whale sound type segmentation

Echolocation Click

Whistle

Pulsed Call

Spectrograms from three characteristic killer whale sounds (see [3])

• Goal: Robust and accurate segmentation of orca sounds within noise-heavy underwater recordings (ORCA-SPOT [3])

Discrete Pulsed Calls (Call Types)

• Pulsed calls are classified into discrete (call types), variable, and aberrant calls [5]

Various pod-specific discrete call types

- Northern residents (killer whale population in northern British Columbia) vocal repertoire of discrete calls consists of more than 40 different types [8, 9]
- Huge inter- but also intra-pod signal variations even within one single human-labeled call type

Outline

Data Corpora and Preprocessing

Deep Representation Learning – Network Architecture, Training, and Results

Call Type Classification – Network Architecture, Training, and Results

Conclusion

6

FACULTY OF ENGINEERING

Data Corpora and Preprocessing

Data Corpora – Deep Representation Learning

Representation learning datasets

Split/		trai	n	va	l	test		
Datasets		smp	%	smp	%	smp	%	
OAC ¹	7,903	5,832	5,832 73.8 1,171		14.8	900	11.4	
AEOTD ²	1,667	1,172	70.3	260	15.6	235	14.1	
DLFD ³	3,331	1,384	41.5	1,171	35.2	776	23.3	
OSD ⁴	19,211	13,493	70.2	2,863	14.9	2,855	14.8	
SUM	32,112	21,881	68.1	5,465	17.0	4,766	14.8	

- ¹ Orchive Annotation Catalog (OAC) [2]
- ² Automatic Extracted Orchive tape data (AEOTD) [3, 4]
- ³ DeepAL Fieldwork Data (DLFD) [1]
- ⁴ Orca Segmented Data (OSD) [3]

Training, validation, and test distribution for deep representation learning

Data Corpora – Call type classification

Call type datasets

Split/		tra	in	Va	st		
Datasets		smp	%	smp	%	smp	%
CCS ¹	138	102	73.9	19	13.8	17	12.3
CCN ²	286	198	69.2	41	14.4	47	16.4
EXT ³	90	63	70.0	12	13.3	15	16.7
SUM	514	363	70.6	72	14.0	79	15.4

¹ Call Catalog Symonds (CCS) [2]

² Call Catalog Ness (CCS) [4]

³ Orchive Extension Catalog (EXT)

Training, validation, and test distribution for call type classification

8

Data Preprocessing

Preprocessing and Augmentation

- Power-Spectrogram
- Augmentation
 - Amplitude scaling
 - Frequency shift
 - Time stretch
- Linear frequency compression (256 bins)
- Addition of noise spectrograms (only for call type classification)
- dB-Normalization
- Trimming / Padding to fixed length (1.28 s)

9

FACULTY OF ENGINEERING

Deep Representation Learning – Network Architecture, Training, and Results

Network Architecture and Training

Architecture

ResNet18-based undercomplete convol. autoencoder for deep representation learning of killer whale signals

- Covolutional bottleneck layer: Convolutional layer (1 × 1 kernel, no stride) compressing 512 × 16 × 8 to 4 × 16 × 8 (512 features) and back
- Linear bottleneck layer: Max-pooling 512 × 16 × 8 to 512 features, fully-connected latent layer (512-D), max-unpooling 512 × 16 × 8

Network Architecture and Training

Training

- Implemented in PyTorch [21]
- Adam optimizer together ($\alpha = 10^{-5}$, $\beta_1 = 0.5$, and $\beta_2 = 0.999$)
- α was decayed by 1/2 after 4 epochs, training stopped after 10 epochs without having any improvements on the validation set
- Batch size of 32 together with a mean squared error (MSE) loss
- Lowest validation loss was selected as criterion for the best autoencoder model
- Various data combinations: semi-automatic labeled data (entire representation corpora), fully hand-labeled data (only OAC corpus), and automatic labeled data (only OSD dataset)

Network Results

Reconstruction results

Top 3 autoencoder (all using bottleneck layer: 1×1 convolution) reconstructions of killer whale sound types from the call type test set; (1) semi-automatic labeled data, (2) hand-labeled data (3) automatic machine-labeled data

FACULTY OF ENGINEERING

Call Type Classification – Network Architecture, Training, and Results

Network Architecture and Training

Architecture

ResNet18-based Convolutional Neural Network (CNN) without max-pooling in the first residual layer for a 12-class problem [10]

Network Architecture and Training

Training

- Implemented in PyTorch [21]
- Adam optimizer together ($\alpha = 10^{-5}$, $\beta_1 = 0.5$, and $\beta_2 = 0.999$)
- α was decayed by 1/2 after 4 epochs, training stopped after 10 epochs without having any improvements on the validation set
- Batch size of 4 together with a 12-class cross entropy loss
- Highest validation accuracy was selected as criterion for the best classification model
- **Pretrained autoencoder encoder parts** (6 different variants) were separately **used for weight initialization** of the call type classifier (except last residual layer)

Network Results

Pretrained call type classification results

a) Mean test accuracy of 10 train/evaluation runs:

(1-c)/(1-l) conv./linear AE on the entire representation learning data, (2-c)/(2-l) conv./linear AE on the OAC corpus, (3-c)/(3-l) conv./linear AE on the OSD dataset, (4) no pretrain (5) mean test accuracy of [10] **b)** Classifier accuracy in a 10-fold cross validation for the top 3 AEs (1-c), (2-c), (3-c)

Network Results

Non-pretrained vs. pretrained call type classification results

 87% test accuracy (without pretraining) [10] vs. 96% test accuracy (best pretrained model)

FACULTY OF ENGINEERING

Conclusion

Conclusion

- Deep representation learning (any form) has a significant positive influence on killer whale call type classification
- Pretraining on our fully automatic machine-labeled OSD corpus led to the best performance (robust and reliable segmentation process [3])
- Fully unsupervised methods (feature learning and clustering on fully automatic segmented orca data) to machine-identify finer and potential undiscovered call types by segmenting/clustering the entire Orchive (20,000 h of underwater recordings)
- Using various cluster outputs for a more robust supervised call type classification by removing human-perception
- Deriving sequential ordered call type structures (syntactic patterns)

Thank you for your attention.

Questions?

©Volker Barth, DeepAL

References I

- ¹ C. Bergler, Deepal fieldwork data 2017/2018 (dlfd), https://www5.cs.fau.de/research/data/ (September 2019).
- ² ORCALAB, Orcalab a whale research station on hanson island, http://orcalab.org (September 2019).
- ³ C. Bergler, H. Schröter, R. Xi Cheng, V. Barth, M. Weber, E. Noeth, H. Hofer, and A. Maier, "Orca-spot: an automatic killer whale sound detection toolkit using deep learning", Scientific Reports **9** (2019) 10.1038/s41598-019-47335-w.
- ⁴ S. Ness, "The orchive : a system for semi-automatic annotation and analysis of a large collection of bioacoustic recordings", PhD thesis (Department of Computer Science, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada, V8P 5C2, 2013), p. 228.
- ⁵ J. K. B. Ford, "Acoustic behaviour of resident killer whales (Orcinus orca) off Vancouver Island, British Columbia", Canadian Journal of Zoology **67**, 727–745 (1989).

References II

- ⁶ M. A. Bigg, P. F. Olesiuk, G. M. Ellis, J. K. B. Ford, and K. C. Balcomb, "Organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State", International Whaling Commission, 383–405 (1990).
- ⁷ T. Ivkovich, O. Filatova, A. Burdin, H. Sato, and E. Hoyt, "The social organization of resident-âăřtype killer whales (Orcinus orca) in Avacha Gulf, Northwest Pacific, as revealed through association patterns and acoustic similarity", Mammalian Biology **75**, 198âĂŘ210 (2010).
- ⁸ J. K. B. Ford, "A catalogue of underwater calls produced by killer whales (Orcinus orca) in British Columbia", Canadian Data Report of Fisheries and Aquatic Science, 165 (1987).
- ⁹ J. K. B. Ford, "Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia", Canadian Journal of Zoology **69**, 1454–1483 (1991).

References III

¹⁰H. Schröter, E. Nöth, A. Maier, R. Cheng, V. Barth, and C. Bergler, "Segmentation, classification, and visualization of orca calls using deep learning", in International conference on acoustics, speech, and signal processing, proceedings (ICASSP) (2019).

Data Distribution

Call Type Label Distribution

Orca Call Type/ Corpus	N01	N02	N03	N04	N05	N07	N09	N12	N47	echo	whistles	noise	SUM
CCS [2]	33	10	-	21	14	18	26	16		—	—	—	138
CCN [4]	36	—	56	60	—	31	70	—	33	_	_	—	286
EXT	—	-	—		—		—		-	30	30	30	90
SUM	69	10	56	81	14	49	96	16	33	30	30	30	514

Orca call type, echolocation, whistle, and noise label distribution of the CCS, CCN, and EXT data corpus

Data Preprocessing

Preprocessing and Augmentation

Data: Training Input Audio A_{inp}

Result: Trainable Spectrogram S_{train}

$$1 \ \mathcal{S}_{inp} \leftarrow 10 \cdot \log_{10}(|\mathcal{FFT}(resamp(mono(\mathcal{A}_{inp}), 44.1 \, \text{kHz}), \text{ffts} = 4096, \, \text{hop} = 441)|^2)$$

2
$$\mathcal{S}_{\textit{train}} \leftarrow \textit{scaleAmplitude}(\mathcal{S}_{\textit{inp}}, \alpha_{\textit{dB}} = \textit{sample}([-6 \, dB, 3 \, dB]))$$

$$\mathcal{S}_{train} \leftarrow shiftPitch(\mathcal{S}_{train}, \alpha = sample([0.5, 1.5]))$$

4
$$S_{train} \leftarrow stretchTime(S_{train}, \alpha = sample([0.5, 2]))$$

5
$$S_{train} \leftarrow compressFrequencies(S_{train}, f_{min} = 500 \text{Hz}, f_{max} = 10\,000 \text{ Hz}, \text{bins} = 256)$$

$$\mathsf{6} \ \ \mathcal{S}_{\textit{train}} \gets \textit{addNoise}(\mathcal{S}_{\textit{train}}, \textit{sample}(\mathcal{S}_{\textit{noise}}), \mathsf{SNR} = \textit{sample}([\mathsf{12dB}, -\mathsf{3dB}]))$$

7
$$S_{train} \leftarrow normalize(S_{train}, dB_{min} = -100 dB, dB_{ref} = 20 dB)$$

8
$$S_{train} \leftarrow trimPad(S_{train}, \text{length} = sample(128))$$

9 return S_{train}