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Introduction: Killer Whale Research

The Killer Whale

• Largest member of the
dolphin family

• Distinct communication
system

• Vocalization not only for
mating or alarm calls also
for orientation and hunting

• Orcas have well marked
social behavior and have
highly social interactions

• Complex social,
communicative, and
cognitive capacities

©Volker Barth, DeepAL

The Killer Whale during fieldwork expedition 2017/2018 in northern
Vancouver Island, British Columbia, Canada
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Introduction: Killer Whale Research

Existing Bioacoustic Archive – The Orchive

• collected by the Orcalab [2]
and Steven Ness [4]

• 20,000 hours of underwater
recordings by using 6
stationary hydrophones
(1985–2010)

• 23,511 digitized audio
tapes each∼45 min.

• Orchive Annotation Catalog
(OAC) [4] comprises
15,480 orca/noise labels

The Orcalab on Hanson Island (northern Vancouver Island, British
Columbia, Canada) and its recording environment
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Introduction: Killer Whale Research

DeepAL Fieldwork Expedition - The DeepAL Fieldwork Data (DLFD) 2017/2018

• collected via a 15-meter
research trimaran

• 1,007 hours of
multi-channel underwater
recordings

• 89 hours video footage
about behavioral data

• Interdisciplinary team
consisting of marine
biologists, computer
scientists, and
psychologists
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DeepAL 2017/2018 Expedition Route (British Columbia) [1]
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Introduction: Killer Whale Research

Killer whale sound type segmentation
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Pulsed Call

Spectrograms from three characteristic killer whale sounds (see [3])

• Goal: Robust and accurate segmentation of orca sounds within noise-heavy
underwater recordings (ORCA-SPOT [3])
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Introduction: Killer Whale Research

Discrete Pulsed Calls (Call Types)
• Pulsed calls are classified into discrete (call types), variable, and aberrant

calls [5]

a) A4 N04 b) A5 N02 c) A12 N03 d) A36 N09

Various pod-specific discrete call types

• Northern residents (killer whale population in northern British Columbia)
vocal repertoire of discrete calls consists of more than 40 different types [8, 9]

• Huge inter- but also intra-pod signal variations even within one single
human-labeled call type
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Outline

Data Corpora and Preprocessing

Deep Representation Learning – Network Architecture, Training, and Results

Call Type Classification – Network Architecture, Training, and Results

Conclusion
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Data Corpora and Preprocessing



Data Corpora – Deep Representation Learning

Representation learning datasets

Split/
Datasets

train val test
smp % smp % smp %

OAC1 7,903 5,832 73.8 1,171 14.8 900 11.4
AEOTD2 1,667 1,172 70.3 260 15.6 235 14.1
DLFD3 3,331 1,384 41.5 1,171 35.2 776 23.3
OSD4 19,211 13,493 70.2 2,863 14.9 2,855 14.8

SUM 32,112 21,881 68.1 5,465 17.0 4,766 14.8
1 Orchive Annotation Catalog (OAC) [2]
2 Automatic Extracted Orchive tape data (AEOTD) [3, 4]
3 DeepAL Fieldwork Data (DLFD) [1]
4 Orca Segmented Data (OSD) [3]

Training, validation, and test distribution for deep representation learning
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Data Corpora – Call type classification

Call type datasets

Split/
Datasets

train val test
smp % smp % smp %

CCS1 138 102 73.9 19 13.8 17 12.3
CCN2 286 198 69.2 41 14.4 47 16.4
EXT3 90 63 70.0 12 13.3 15 16.7

SUM 514 363 70.6 72 14.0 79 15.4
1 Call Catalog Symonds (CCS) [2]
2 Call Catalog Ness (CCS) [4]
3 Orchive Extension Catalog (EXT)

Training, validation, and test distribution for call type classification
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Data Preprocessing

Preprocessing and Augmentation

• Power-Spectrogram

• Augmentation

• Amplitude scaling
• Frequency shift
• Time stretch

• Linear frequency compression (256 bins)

• Addition of noise spectrograms (only for call type classification)

• dB-Normalization

• Trimming / Padding to fixed length (1.28 s)
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Deep Representation Learning – Network
Architecture, Training, and Results



Network Architecture and Training

Architecture
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ResNet18-based undercomplete convol. autoencoder for deep representation learning of killer whale signals

• Covolutional bottleneck layer: Convolutional layer (1×1 kernel, no stride)
compressing 512×16×8 to 4×16×8 (512 features) and back

• Linear bottleneck layer: Max-pooling 512×16×8 to 512 features,
fully-connected latent layer (512-D), max-unpooling 512×16×8
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Network Architecture and Training

Training

• Implemented in PyTorch [21]
• Adam optimizer together (α = 10−5, β1 = 0.5, and β2 = 0.999)
• α was decayed by 1/2 after 4 epochs, training stopped after 10 epochs

without having any improvements on the validation set
• Batch size of 32 together with a mean squared error (MSE) loss
• Lowest validation loss was selected as criterion for the best autoencoder

model
• Various data combinations: semi-automatic labeled data (entire

representation corpora), fully hand-labeled data (only OAC corpus), and
automatic labeled data (only OSD dataset)
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Network Results

Reconstruction results

N09

whistle

echo

original (1) (2) (3)

Top 3 autoencoder (all using bottleneck layer: 1×1 convolution) reconstructions of killer whale sound types from
the call type test set; (1) semi-automatic labeled data, (2) hand-labeled data (3) automatic machine-labeled data
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Call Type Classification – Network Architecture,
Training, and Results



Network Architecture and Training

Architecture
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ResNet18-based Convolutional Neural Network (CNN) without max-pooling in the first residual layer for a
12-class problem [10]
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Network Architecture and Training

Training

• Implemented in PyTorch [21]
• Adam optimizer together (α = 10−5, β1 = 0.5, and β2 = 0.999)
• α was decayed by 1/2 after 4 epochs, training stopped after 10 epochs

without having any improvements on the validation set
• Batch size of 4 together with a 12-class cross entropy loss
• Highest validation accuracy was selected as criterion for the best

classification model
• Pretrained autoencoder encoder parts (6 different variants) were

separately used for weight initialization of the call type classifier (except
last residual layer)
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Network Results

Pretrained call type classification results
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b) Accuracy Call Type Classifier (10-fold)

a) Mean test accuracy of 10 train/evaluation runs:
(1-c)/(1-l) conv./linear AE on the entire representation learning data, (2-c)/(2-l) conv./linear AE on the OAC
corpus, (3-c)/(3-l) conv./linear AE on the OSD dataset, (4) no pretrain (5) mean test accuracy of [10]
b) Classifier accuracy in a 10-fold cross validation for the top 3 AEs (1-c), (2-c), (3-c)
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Network Results

Non-pretrained vs. pretrained call type classification results
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hypothesis – non-pretrained classifier hypothesis – best pretrained classifier

• 87 % test accuracy (without pretraining) [10] vs. 96 % test accuracy (best
pretrained model)
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Conclusion



Conclusion

• Deep representation learning (any form) has a significant positive influence

on killer whale call type classification

• Pretraining on our fully automatic machine-labeled OSD corpus led to the

best performance (robust and reliable segmentation process [3])

• Fully unsupervised methods (feature learning and clustering on fully

automatic segmented orca data) to machine-identify finer and potential

undiscovered call types by segmenting/clustering the entire Orchive

(20,000 h of underwater recordings)

• Using various cluster outputs for a more robust supervised call type

classification by removing human-perception

• Deriving sequential ordered call type structures (syntactic patterns)
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Thank you for your attention.

Questions?

©Volker Barth, DeepAL
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Data Distribution

Call Type Label Distribution

Orca Call Type/
Corpus N01 N02 N03 N04 N05 N07 N09 N12 N47 echo whistles noise SUM

CCS [2] 33 10 — 21 14 18 26 16 — — — — 138
CCN [4] 36 — 56 60 — 31 70 — 33 — — — 286
EXT — — — — — — — — — 30 30 30 90

SUM 69 10 56 81 14 49 96 16 33 30 30 30 514

Orca call type, echolocation, whistle, and noise label distribution of the CCS, CCN, and EXT data corpus
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Data Preprocessing

Preprocessing and Augmentation

Data: Training Input AudioAinp

Result: Trainable Spectrogram Strain

1 Sinp← 10 · log10(|FFT (resamp(mono(Ainp),44.1kHz), ffts = 4096, hop = 441)|2)
2 Strain← scaleAmplitude(Sinp,αdB = sample([−6dB,3dB]))

3 Strain← shiftPitch(Strain,α = sample([0.5,1.5]))

4 Strain← stretchTime(Strain,α = sample([0.5,2]))

5 Strain← compressFrequencies(Strain, fmin = 500Hz, fmax = 10000Hz,bins = 256)

6 Strain← addNoise(Strain,sample(Snoise),SNR = sample([12dB,−3dB]))

7 Strain← normalize(Strain,dBmin =−100dB,dBref = 20dB)

8 Strain← trimPad(Strain, length = sample(128))

9 return Strain
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