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Abstract. Marine mammals produce a wide variety of vocalizations. There is
a growing need for robust automatic classification methods especially in noisy
underwater environments in order to access large amounts of bioacoustic signals
and to replace tedious and error prone human perceptual classification. In case of
the northern resident killer whale (Orcinus orca), echolocation clicks, whistles,
and pulsed calls make up its vocal repertoire. Pulsed calls are the most inten-
sively studied type of vocalization. In this study we propose a hybrid call type
classification approach outperforming our previous work on supervised call type
classification consisting of two components: (1) deep representation learning of
killer whale sounds by investigating various autoencoder architectures and data
corpora and (2) subsequent supervised training of a ResNet18 call type classi-
fier on a much smaller dataset by using the pre-trained representations. The best
semi-supervised trained classification model achieved a test accuracy of 96 %
and a mean test accuracy of 94 % outperforming our previous work by 7 percent
points.

Keywords: Deep Learning, Classification, Representation Learning, Bioacous-
tics, Orca, Killer Whale, Call Type

1 Introduction

An increasing use of passive acoustic monitoring of various animal species result in
massive quantity of bioacoustic data. For example, the Orcalab [20] has collected un-
derwater recordings on killer whales for 23 years resulting in about 20,000 hours. There
is a growing need for effective methods of automatic classification of bioacoustic sig-
nals. It offers significant advantages as in assessing large datasets, frees humans from
time-consuming and labor intensive work, and offers rigorous and consistent results.

The authors would like to thank Helena Symonds and Paul Spong from Orcalab, and Steven
Ness, formerly UVIC, for giving us permission to use the raw data and annotations from or-
calab.org, and the Paul G. Allen Frontiers Group for their initial grant for the pilot research.
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Killer whales (Orcinus orca), the largest member of the dolphin family, are one of sev-
eral species with relatively well-studied and complex vocal cultures [7]. Extensive re-
search on killer whale acoustic behavior has been conducted on the resident fish-eating
killer whales in the northeast Pacific. Resident killer whales live in stable matrilineal
units [2]. Those matrilines, that often travel together to socialize on a regular basis,
form subpods and pods [15, 8, 9, 2]. Apart from echolocation clicks and whistles, killer
whales produce a number of social sounds with distinct frequency contours which are
group specific. Those pulsed calls, the most common and excessively studied type of
killer whale vocalization, are classified into discrete, variable, and aberrant calls. It typ-
ically shows sudden and patterned shifts in frequency, according to the pulse repetition
rate, which is normally between 250 and 2000 Hz [10]. Acoustically related animals
are assigned to a so-called clan, an acoustic grouping of pods that have one or more
discrete calls in common [2]. Basically, all pods of a clan have a common repertoire of
calls, with slight vocal distinctions in between [11]. Due to the resulting variety of call
variants, group-specific dialects arise [11]. Those pod-specific dialects consist of up to
20 types of discrete calls each, and in total the northern residents vocal repertoire of
discrete calls consists of more than 40 types [11, 9] (examples in Figure 1). Call struc-
ture variations can be observed in various shared call types [18]. Group-specific vocal
signals are believed to play an important role in maintaining contact among members
or coordinate group activities, especially when the group is dispersed and when vi-
sual signals can only be used in short-distance communication [10]. The current study
builds on the previously achieved deep learning-based segmentation [22] and tries to
improve our previous supervised call type classification result [22]. Unsupervised deep
representation learning and subsequent classification could also be very helpful improv-
ing language or even speaker dependent classification/identification models. Moreover,
unsupervised deep representation learning of (compressed) bottleneck features can sup-
port to identify and examine indigenous languages.

a) A4 N04 b) A5 N02 c) A12 N03 d) A36 N09

Fig. 1: Pod-specific (A4, A5, A12, A36) killer whale call type (N04, N02, N03, N09) spec-
trograms (sample rate = 44.1 khZ, FFT–size = 4096 samples (∼100 ms), hop–size = 441 samples
(∼10 ms))
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1.1 Related Work

Brown et al. [3] used dynamic time warping to compare the melodic contours of 57
captive killer whale vocalizations and k-means to cluster into 9 call types. Furthermore,
Brown et al. [4] classified 75 killer whale calls into 7 call types using hidden Markov
models and Gaussian mixture models resulting in more than 90 % agreement. Ness [19]
classified between 12 various killer whale call types achieving an average accuracy
of 76 % by using an SVM with a Radial Basis Function kernel. Brown et al. [5] did
killer whale individual identification by distinguishing within four diverse animals via
differentiating between one specific call type. Deecke et al. [6] introduced a method
for dolphin and killer whale sound categorization via dynamic time warping and an
adaptive resonance theory neural network. Mercado et al. [17] classified 242 humpback
whale vocalizations via a combination of a source-filter model and an artifical neural
network. Garland et al. [12] classified 1,019 Beluga whale sounds into 34 different
call types using non-parametric classification tree analysis and random forest analysis
achieving an accuracy of 83 %.

2 Methodology

Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a state-of-the-art end-to-end deep learning con-
cept first used by LeCun et al. [16] for handwritten letter recognition. CNNs facilitate
to efficiently handle 2-D input data (e.g. spectrograms). CNNs are designed after the
traditional principle of pattern recognition, implementing covolutional layers for fea-
ture learning/extraction and subsequent fully-connected layers for classification [16].
Convolutional layers unite several very important architectural approaches: (1) local re-
ceptive fields, (2) shared weights, and (3) spatial/temporal sub-sampling (pooling) [16].
For a more detailed explanation of a CNN and its underlying concepts, see [16].

Residual Network (ResNet)

Training very deep neural networks in order to learn higher-level and more discrimina-
tive features results in various optimization problems (vanishing/exploding gradients,
degradation problem) [14]. He et al. [14] introduced a residual learning framework in
an architecture called residual network (ResNet), using residual mappings to not di-
rectly learn and optimize an unreferenced underlying mapping H(x) with respect to
the input x but rather a residual mapping F (x) = H(x)− x, in order to counteract the
degradation problem. Moreover, He et al. [14] present different and typical ResNet ar-
chitectures based on their number of concatenated layers which have proven successful
in practice. For a more detailed explanation about deep residual learning, see [14].

Autoencoder

An autoencoder is a (deep) neural network architecture, trying to map a given input x
to an output/reconstruction r via a hidden representation h [13]. This architecture con-
sists of two basic components: (1) an encoder e acting as a function, mapping the input
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x to the hidden layer representation h via h = e(x), (2) a decoder d officiating as a
function which maps the hidden layer latent code h to the output/reconstruction r via
r = d(h) [13]. In this work we used various residual-based convolutional undercom-
plete autoencoders constraining h to a smaller dimension than the input x [13] in order
to learn an embedding h comprising the most prominent features via minimizing the
loss L(x, d(e(x))), penalizing the dissimilarity between x and d(e(x)) [13].

Deep Representation Learning

Representation learning is a way of learning useful data representations (features), di-
rectly on the given input data, rather than performing a labor-intensive feature extrac-
tion/selection based on handcrafted features (feature engineering), in order to utilize
them for a subsequent classification task [1]. Usually the amount of unlabeled data is
much higher than the one of labeled data. Consequently, a pure supervised training on
limited labeled data mostly results in overfitting [13] and a lack of robustness/general-
ization towards unseen real-world data especially in case of extremely heterogeneous
data corpora. Representation learning provides an opportunity of combining unsuper-
vised and supervised learning by using the unsupervised learned task-related represen-
tations as initialization of the original supervised task in order to produce a more ac-
curate and robust semi-supervised trained classification model [13]. In this study deep
learning techniques were used to derive adequate feature representations.

3 Datasets and Data Distribution

3.1 Datasets

Orchive Annotation Catalog (OAC)

Ness [19] published the OAC dataset in cooperation with the Orcalab [20], comprising
15,480 labeled underwater events (stereo, sampling rate: 44.1 kHz) extracted from the
Orchive [19]. The annotations include various killer whale sounds and several noise
samples [22]. For later killer whale specific representation learning, we extracted all
valid killer whale signals (killer whale calls, whistles, echolocations) from the OAC
containing 7,903 killer whale samples with a total annotated time of 9.96 h.

Automatic Extracted Orchive Tape Data (AEOTD)

In order to provide further killer whale signals for representation learning, we filtered
all killer whale sounds from the AEOTD dataset described in [22]. The entire dataset
includes 1,667 killer whale sounds with an annotation time of 1.4 h.

DeepAL Fieldwork Data 2017/2018 (DLFD)

During our research expedition in northern British Columbia (2017/2018) we have col-
lected additional multi-channel killer whale and noise data via a 15-meter research tri-
maran using underwater microphone arrays [22]. According to [22] we selected four
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different channels out of the multi-channel labeled killer whale sound events to fur-
thermore increase our overall killer whale data for representation learning. The DLFD
comprises 3,331 killer whale signals and an overall annotation time of 3.40 h.

Orca Segmented Data (OSD)

The OSD corpus is a result of a fully automatic segmentation using our trained ResNet18
classifier [22], distinguishing between killer whale and noise sound events. To enlarge
the existing database even further, we automatically extracted killer whale signals de-
tected by our segmenter. The resulting OSD corpus comprises 19,211 killer whale sig-
nals and an overall annotated time of 34.47 h. Thus, according to [22], there should be
about 4 % false positives within the OSD corpus.

Call Type Catalogs

For training, validation and testing of the call type classifier we used the same data pool
as described in [22], consisting of two different call type catalogs – Orcalab catalog
(CCS) with 138 killer whale sounds containing 7 various call type classes, Ness catalog
(CCN) with 286 killer whale signals including 6 different call types – plus an extension
catalog (EXT) including 30 echolocations, 30 whistles, and 30 noise files manually
selected from the Orchive data [22] in order to simulate a real-world scenario. In total
this results in 12 classes, consisting of 9 various call types, echolocations, whistles, and
noise samples summing up to 514 samples (see Table 1).

Table 1: Orca call type, echolocation, whistle, and noise label distribution of the CCS,
CCN, and EXT data corpus

Orca Call Type/
Corpus N01 N02 N03 N04 N05 N07 N09 N12 N47 echo whistles noise SUM

CCS 33 10 — 21 14 18 26 16 — — — — 138
CCN 36 — 56 60 — 31 70 — 33 — — — 286
EXT — — — — — — — — — 30 30 30 90
SUM 69 10 56 81 14 49 96 16 33 30 30 30 514

3.2 Data Distribution

In Table 2 the data distribution of the entire representation learning and whole call type
classification data corpus is described. The representation learning data listed in Ta-
ble 2a consists of the aforementioned OAC, AEOTD, DLFD, and OSD corpus summing
up to a total amount of 32,112 killer whale sounds. The call type classification dataset
in Table 2b includes the previously illustrated CCS, CCN, and EXT dataset summing
up to an overall amount of 514 signals [22]. For the entire representation learning data
corpus every file was removed which belonged to the same tape as one of the signals
from the call type classification dataset. Consequently, the training, validation and test
signals of the representation learning corpus are completely independent of those from
the call type classification dataset.
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Table 2: Training, validation, and test distribution for representation learning and call
type classification

Split/
Datasets

train val test
smp % smp % smp %

OAC 7,903 5,832 73.8 1,171 14.8 900 11.4
AEOTD 1,667 1,172 70.3 260 15.6 235 14.1
DLFD 3,331 1,384 41.5 1,171 35.2 776 23.3
OSD 19,211 13,493 70.2 2,863 14.9 2,855 14.8
SUM 32,112 21,881 68.1 5,465 17.0 4,766 14.8

a) Representation learning data distribution

Split/
Datasets

train val test
smp % smp % smp %

CCS 138 102 73.9 19 13.8 17 12.3
CCN 286 198 69.2 41 14.4 47 16.4
EXT 90 63 70.0 12 13.3 15 16.7
SUM 514 363 70.6 72 14.0 79 15.4

b) Call type data distribution

4 Experimental Setup

4.1 ResNet18 Autoencoder

In this work we used an undercomplete autoencoder based on the ResNet18 [14] archi-
tecture. Figure 2 visualizes the utilized network architecture. For the bottleneck layer,
various layer types were investigated: (1) convolutional layer (1×1 convolution without
stride to compress 512 channels to 4×16×8 and back to 512×16×8) and (2) fully-
connected layer (max-pooling of 512×16×8 to a 512-D latent layer and subsequent
max-unpooling back to 512×16×8). The ResNet18 encoder architecture was slightly
modified in terms of removing the 3×3 (stride 2) max-pooling from the first residual
layer in order to keep higher frequency resolutions within the early stages [22]. The
decoder utilized transposed convolutions for upsampling and slightly differs from the
encoder. In order to avoid artifacts in our last layer, potentially caused by transposed
convolutions with stride 2, we already upsampled to 256×128 in the penultimate layer
and processed a final transposed convolution (stride 1) to compensate such errors.
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Residual
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Feature Maps Feature Maps
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Fig. 2: Architecture of the ResNet18 autoencoder with a parametric bottleneck layer
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4.2 ResNet18 Call Type Classifier

Our call type classifier [22] is based on a ResNet18 architecture (feature extraction
part) combined with a 512-D fully connected hidden layer and a subsequent 12-D out-
put layer (classification part) in order to distinguish between 12 classes (see Table 1).
Figure 3 visualizes the network architecture of our call type classifier [22].

Ini�al

Convolu�on
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@128x64

128
@64x32

256
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12
64
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Feature Maps

Fig. 3: Architecture of the ResNet18 call type classifier [22]

4.3 Data preprocessing and augmentation

The ResNet18 based autoencoder (Figure 2) and call type classifier (Figure 3) used the
same data preprocessing toolchain. As described in [22] every audio sample was con-
verted to a 44.1 kHz mono wav signal, followed by a STFT (window size = 4,096, hop
size = 441) transforming the audio to a power spectrogram [22]. The power spectrogram
was converted to dB and further changed via various sequential ordered augmentation
techniques, all using an uniform distributed random scaling [22]. Intensity (-6 – +3 dB),
pitch (0.5 – 1.5), and time (0.5 – 2.0) augmentation were conducted first [22]. In a next
step a linear frequency compression (fmin = 500 Hz, fmax = 10 kHz) was processed re-
sulting in 256 frequency bins. Afterwards characteristic pitch and time augmented, fre-
quency compressed noise files of the segmenter train set in [22] were added using a ran-
domly chosen SNR between -3 and +12 dB [22]. Noise augmentation was only activated
while training the classifier. A subsequent dB-normalization within -100 dB (minimum
level) and +20 dB (reference level) was performed. To provide training clips of equal
size we randomly chose a 1.28 s segment (if applicable zero-padding) of the final spec-
trogram resulting in a 256×128 large training sample [22].

4.4 Training, Validation, and Testing

All our trained models, implemented in PyTorch [21], used an Adam optimizer together
with an initial learning rate of 10−5, β1 = 0.5, and β2 = 0.999 [22]. The learning rate
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was decayed by 1/2 after 4 epochs, and the entire training was stopped after 10 epochs
without having any improvements on the validation set [22]. For deep representation
learning, we utilized a batch size of 32 together with a weighted mean squared error
(MSE) loss. For call type classification a batch size of 4 in combination with a 12-class
cross entropy loss was used [22]. The lowest validation loss was selected as criterion
for the best autoencoder model, whereas the highest validation accuracy was picked in
case of finding the best call type classifier. The autoencoder was trained on the entire or
portions of the data listed in Table 2a. The call type classifier was trained on the same
data as in [22], listed in Table 2b. Furthermore, we computed a 10-fold cross-validation
on the entire call type dataset in order to get a better impression about the overall model
robustness.

4.5 Experiments

Our experimental setup is divided into three major parts: (1) investigations regarding the
best ResNet18 autoencoder architecture trained on the entire or various data portions of
Table 2a, (2) evaluating the impact of representation learning by training, validating,
and testing our pretrained call type classifier on the given data corpus illustrated in
Table 2b, and (3) analyzing the pretrained ResNet18 classifiers models by performing
a 10-fold cross validation using the entire call type classification corpus in Table 2b.
In (1) we examined two bottleneck architectures; linear versus convolutional architec-
tures (see section 4.1) of our ResNet18 autoencoder (Figure 2) together with different
data combinations: semi-automatic labeled data (entire representation corpora), fully
hand-labeled data (only OAC corpus), and automatic labeled data (only OSD dataset),
listed in Table 2a. In (2) we evaluated the call type classifier (Figure 3) by using the
pre-trained autoencoder weights and calculating the accuracy based on 10 training/e-
valuation runs (Figure 5a). Moreover, in experiment (3), a 10-fold cross validation was
conducted on the entire call type dataset listed in Table 2b in order to give an impres-
sion about the overall classifier robustness. Here we only evaluated the best pre-trained
classifiers with respect to the trained data combinations (semi-automatic labeled, hand-
labeled, automatic labeled; see Figure 5b).

5 Results

In this study six different ResNet18-based autoencoders were trained and analyzed
utilizing linear or convolutional bottleneck layers for semi-automatic labeled, hand-
labeled, and automatic labeled data corpora: (1) linear/convolutional autoencoder on
the entire dataset listed in Table 2a (semi-automatic labeled data), (2) linear/convolu-
tional autoencoder on the OAC dataset (hand-labeled data), and (3) linear/convolutional
autoencoder on the OSD dataset (automatic machine-labeled data). Figure 4 shows the
autoencoder signal reconstruction results based on the three different killer whale sound
types taken from the call type test set listed in Table 2b. None of the reconstructed files
was part of the training or validation. With respect to each trained dataset we only visu-
alized the reconstructions of the autoencoders using the convolutional bottleneck layer,
since they provided better results.
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N09

whistle

echo

original (1) (2) (3)

Fig. 4: Autoencoder (AE) reconstructions of killer whale sound types from the call type test set
(1) AE (convolutional bottleneck) trained on the entire data listed in Table 2a (semi-automatic
labeled data), (2) AE (convolutional bottleneck) trained on the OAC corpus (hand-labeled data)
(3) AE (convolutional bottleneck) trained on the OSD dataset (automatic machine-labeled data)

All of our six pretrained autoencoder encoder parts were separately used for weight
initialization of the call type classifier which was trained on the data listed in Table 2b.
Therefore we removed bottleneck layer and decoder part in order to only use the en-
coder part combined with a global average pooling and subsequent fully-connected
layer followed by a 12-dimensional output layer in order to classify between the differ-
ent sound events (see Figure 3). Deeper layers learn more specific and high-level fea-
tures. In the case of representation learning, the last residual layer learns to provide a
good basis for a successful reconstruction rather than an accurate classification. Hence,
we randomly initialized the last residual layer and did not use the pretrained weights
in that case. Figure 5 visualizes the impact of deep representation learning with respect
to the call type classification accuracy. All six pretrained autoencoders and their clas-
sification results are illustrated. The notation used for the various autoencoder variants
consists of a number (1, 2, 3) illustrating the entire dataset (1), OAC dataset (2), and the
OSD dataset (3) as well as a letter (c, l) describing if a convolutional (c) or linear (l) bot-
tleneck layer was used (e.g. 3-c describes an autoencoder with a linear bottleneck layer
trained on the OSD dataset). In addition a result without any pretraining (Figure 5a, row
4) was added. The statistics about the accuracy were based on 10 training/evaluation
runs. Furthermore, we also put the mean test accuracy of our previous work [22] to the
graph which corresponds to only 5 runs (Figure 5a, row 5). The average accuracy for
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every pretrained classifier was better than without pretraining. According to Figure 5a,
the best test performance on average (94 %), smallest variance/stdv, and the best sin-
gle model accuracy (96 %) was achieved by the pretrained classifier using the con-
volutional autoencoder (3-c) trained on the fully automatic machine-segmented OSD
dataset. Figure 6 visualizes the confusion matrix of our best model (3-c, 96 % accu-
racy) compared to the matrix illustrated in our previous work [22]. In order to compute
the overall classifier accuracy with respect to the entire call type dataset (Table 2b) we
conducted a 10-fold cross validiation. For each dataset we selected the pretrained au-
toencoder version which led to a better subsequent classification accuracy. In all cases
the autoencoder with the convolutional bottleneck layer outperformed the linear variant.
Consequently, we used autoencoder 1-c, 2-c, and 3-c for weight initialization of the dif-
ferent classifiers to run the 10-fold cross validation. The classification results about the
10-fold cross validation are shown in Figure 5b. The best semi-supervised trained call
type classifier (Figure 5b, 3-c) used the machine-segmented OSD dataset and achieved
the highest mean test accuracy of 90 % whereas one test fold reached up to 98 %.

0.75 0.8 0.85 0.9 0.95 1

(1-c)
(1-l)
(2-c)
(2-l)
(3-c)
(3-l)
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(5)

a) Accuracy Call Type Classifier (10 runs)
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(3-c)

b) Accuracy Call Type Classifier (10-fold)

Fig. 5: a) Mean test accuracy of 10 train/evaluation runs: (1-c) convolutional, (1-l) linear AE on
the entire data listed in Table 2a, (2-c) convolutional, (2-l) linear AE on the OAC corpus, (3-c)
convolutional, (3-l) linear AE on the OSD dataset, (4) no pretrain (5) mean test accuracy of [22]
b) Classifier accuracy in a 10-fold cross validation (Table 2b) for the top 3 AEs (1-c), (2-c), (3-c)

re
fe

re
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e

hypothesis – non-pretrained classifier hypothesis – best pretrained classifier

Fig. 6: Confusion matrix (12-classes) – non-pretrained call type classifier (ACC = 87 %) [22] vs.
best pretrained call type classifier (ACC = 96 %))
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6 Conclusion

In summary, deep representation learning has a significant positive influence on killer
whale call type classification. Particularly important is the fact that regardless of the
autoencoder architecture, as well as from the utilized data corpora, any form of repre-
sentation learning has led to an improvement referring to the mean test classification ac-
curacy. Moreover, pretraining on our fully automatic machine-labeled OSD corpus led
to the best performance being a great indicator of having a robust and reliable segmen-
tation process [22]. In future work we will segment the entire 20,000 h of underwater
recordings for further killer whale representation learning. Moreover, we plan to inves-
tigate the huge variety of machine-segmented killer whale call types by using various
feature learning techniques combined with subsequent clustering methods in order to
establish a fully unsupervised pipeline for killer whale call type identification/classifi-
cation. On the one hand, this allows us to explore finer, more significant and potential
undiscovered killer whale call types. On the other hand, the entire call type classifica-
tion can be performed completely independent from human perception. Furthermore,
the unsupervised identified call types and possible sub-call types can be also used for
subsequent supervised learning approaches.
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