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ABSTRACT

Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which

can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of

non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage

of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve

sufficient vocalizations for further analysis – particularly important for species with advanced social systems and complex

vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise

segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository – the Orchive – comprising

roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings

(about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2 %

and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustic

databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns.

The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research.

ORCA-SPOT can be adapted to other animal species.

Introduction

There has been a long-standing interest to understand the meaning and function of animal vocalizations as well as the struc-

tures which determine how animals communicate1. Studies on mixed-species groups have advanced the knowledge of how

non-human primates decipher the meaning of alarm calls of other species2, 3. Recent research indicates that bird calls or

songs display interesting phonological, syntactic, and semantic properties4–8. In cetacean communication, whale songs are a

sophisticated communication system9, as in humpback whales (Megaptera novaeangliae) whose songs were found to be only

sung by males and mostly during the winter breeding season10. These are believed to attract prospective female mates and/or

establish dominance within male groups11, 12. Moreover, studies on captive and temporarily captured wild bottlenose dolphins

(Tursiops truncatus) have shown that individually distinct, stereotyped signature whistles are used by individuals when they are

isolated from the group13–15, in order to maintain group cohesion16.

Many different animal species have a strong ability to communicate. In this study, the killer whale was used as a prototype

in order to confirm the importance and general feasibility of using machine-based deep learning methods to study animal

communication.

Killer whales (Orcinus orca) are the largest members of the dolphin family and are one of several species with relatively

well-studied and complex vocal cultures17. Recent studies on killer whale and bottlenose dolphin brains reveal striking and

presumably adaptive features to the aquatic environment18–21. They are believed to play an important role in their commu-

nicative abilities and complex information processing22. Extensive research on killer whale acoustic behavior has taken place

in the Northeast Pacific where resident fish-eating, transient mammal-eating and offshore killer whales can be found, the

three ecotypes of killer whales in this region. They differ greatly in prey preferences, vocal activity, behavior, morphology



and genetics23–27. Figure 1 shows the population distribution and geographic ranges of killer whales in the Northeast Pacific.

Resident killer whales live in stable matrilineal units that join together to socialize on a regular basis, forming subpods and

pods28, 29. Different pods produce distinct vocal repertoires, consisting of a mixture of unique and shared (between matrilines)

discrete call types, which are referred to as dialects. Ford30 and Wiles31 suggested that individuals from the same matriline and

originating from a common ancestor most likely share similar acoustic vocal behaviors. Pods that have one or more discrete

calls in common are classified as one acoustic clan32. The diverse vocal repertoire of killer whales comprises clicks, whistles,

and pulsed calls33. Like other odontocetes, killer whales produce echolocation clicks, used for navigation and localization,

which are short pulses of variable duration (between 0.1 and 25 ms) and a click-repetition-rate from a few pulses to over

300 per second33 (Figure 2a). Whistles are narrow band tones with no or few harmonic components at frequencies typically

between 1.5 and 18 kHz and durations from 50 ms up to 12 s33 (Figure 2b). As recently shown, whistles extend into the

ultrasonic range with observed fundamental frequencies ranging up to 75 kHz in three Northeast Atlantic populations but

not in the Northeast Pacific34. Whistles are most commonly used during close-range social interactions. There are variable

and stereotyped whistles35–37. Pulsed calls, the most common and intensively studied vocalization of killer whales, typically

show sudden and patterned shifts in frequency, based on the pulse repetition rate, which is usually between 250 and 2000 Hz33

(Figure 2c). Pulsed calls are classified into discrete, variable, and aberrant calls33. Some highly stereotyped whistles and pulsed

calls are believed to be culturally transmitted through vocal learning36, 38–41. Mammal-hunting killer whales in the Northeast

Pacific produce echolocation clicks, pulsed calls and whistles at significantly lower rates than fish-eating killer whales36, 42, 43

because of differences in the hearing sensitivity of their respective prey species44. The acoustic repertoire in terms of discrete

calls of Northeast Pacific killer whales is made up of calls with and without a separately modulated high-frequency component45.

The use of discrete calls, with and without an overlapping high-frequency component, was also observed in southeast Kam-

chatka killer whales46. In the Norwegian killer whale population, pod-specific dialects were reported47, and a number of call

types used in different contexts were documented47, 48, though much less is known about their vocalizations and social systems49.

With the decrease of hardware costs, stationary hydrophones are increasingly deployed in the marine environment to record

animal vocalizations amidst ocean noise over an extended period of time. Bioacoustic data collected in this way is an important

and practical source to study vocally active marine species50–53 and can make an important contribution to ecosystem monitor-

ing54. One of the datasets that the current study uses is the Orchive55, 56, containing killer whale vocalizations recorded over

a period of 23 years and adding up to approximately 19,000 hours. Big acoustic datasets contain a wealth of vocalizations.

However, in many cases the data density in terms of interesting signals is not very high. Most of the large bioacoustic databases

have continuously been collected over several years, with tens of thousands of hours usually containing only a small percentage

of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve

sufficient vocalizations for a detailed call analysis56, 57. For example, so far only ≈1.6 % of the Orchive was partially annotated

by several trained researchers. This is not only time consuming and labor intensive but also error-prone and often results in

a limited sample size, being too small for a statistical comparison of difference58, and thus for the recognition of significant

patterns. Both, the strong underrepresentation of valuable signals, and the enormous variation in the characteristics of acoustic

noise are big challenges. The motivation behind our work is to enable a robust and machine-driven segmentation, in order to

efficiently handle large data corpora and separate all interesting signal types from noise.

Before conducting a detailed call analysis, one needs to first isolate and extract the interesting bioacoustic signals. In the past

decade, various researchers have used traditional signal processing and speech recognition techniques, such as dynamic time

warping59–61, hidden Markov and Gaussian mixture models62–65, as well as spectrogram correlation66, 67 to develop algorithms

in order to detect dolphin, bowhead whale, elephant, bird, and killer whale vocalizations. Others have adopted techniques

like discriminant function analysis68, 69, random forest classifiers70, 71, decision tree classification systems72, template-based

automatic recognition73, artificial neural networks74–77, and support vector machines56, 78 in conjunction with (handcrafted)

temporal and/or spectral features (e.g. mel-frequency cepstrum coefficients) for bat, primate, bird, and killer whale sound

detection/classification. Many of the aforementioned research works59–67, 69, 72, 74, 75, 77, 78 used much smaller datasets, both for

training and evaluation. In addition, for many of those traditional machine-learning techniques, a set of acoustic (handcrafted)

features or parameters needed to be manually chosen and adjusted for the comparison of similar bioacoustic signals. However,

features derived from small data corpora usually do not reflect the entire spread of signal varieties and characteristics. Moreover,

traditional machine-learning algorithms often perform worse than modern deep learning approaches, especially if the dataset

contains a comprehensive amount of (labeled) data79. Due to insufficient feature qualities, small training/validation data,

and the traditional machine-learning algorithms themselves, model robustness and the ability to generalize suffer greatly

while analyzing large, noise-heavy, and real-world (unseen) data corpora containing a variety of distinct signal characteristics.

Furthermore, traditional machine-learning and feature engineering algorithms have problems in efficiently processing and

modelling the complexity and non-linearity of large datasets80. Outside the bioacoustic field, deep neural network (DNN)
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methods have progressed tremendously because of the accessibility to large training data and increasing computational power by

the use of graphics processing units (GPUs)81. DNNs have not only performed well in computer vision but also outperformed

traditional methods in speech recognition as evaluated in several benchmark studies82–85. Such recent successes of DNNs

inspired the bioacoustic community to apply state-of-the-art methods on animal sound detection and classification. Grill86

adopted feedforward convolutional neural networks (CNNs) trained on mel-scaled log-magnitude spectrograms in a bird audio

detection challenge. Other researchers also implemented various types of deep neural network architecture for bird sound

detection challenges79 and for the detection of koala activities87. Google AI Perception recently has successfully trained a

convolutional neural network (CNN) to detect humpback whale calls in over 15 years of underwater recordings captured at

several locations in the Pacific57.

This study utilizes a large amount of labeled data and state-of-the-art deep learning techniques (CNN) effectively trained to

tackle one main challenge in animal communication research: develop an automatic, robust, and reliable segmentation of useful

and interesting animal signals from large bioacoustic datasets. None of the above mentioned previous studies focused on such

an extensive evaluation in real-world-like environments, verifying model robustness and overall success in generalization under

different test cases and providing several model metrics and error margins in order to prepare and derive a network model that

will be able to support researchers in future fieldwork.

The results from this study provide a solid cornerstone for further investigations with respect to killer whale communication

or any other communicative animal species. Robust segmentation results enable, in a next step, the generation of machine-

identified call types, finding possible sub-units, and detecting reoccurring communication patterns (semantic and syntactic

structures). During our fieldwork, conducted in British Columbia (Vancouver Island) in 2017/2018, video footage on killer

whale behaviour of about 89 hours was collected. The video material, together with the observed behavioral patterns, can be

used to correlate them with the derived semantic and syntactic communication patterns. This is a necessary step ahead towards

deriving language patterns (language model) and further understanding the animals.

The well-documented steps and the source code88 will be made freely available to the bioacoustic community in October 2019.

Other researchers can improve/modify the algorithms/software in order to use it for their own research questions, which in turn

will implicitly advance bioacoustics research. Moreover, all segmented and extracted audio data of the entire Orchive will be

handed over to the OrcaLab55 and Steven Ness56.

Data Material

The following section describes all datasets used for network training, validation and testing. Table 1 gives a brief summary of

all used datasets and provides an overview on the amount of data and sample distribution of each partition. Each data corpus

consists of already extracted and labeled killer whale and noise audio files of various length. In order to use the illustrated

labeled data material as network input, several data preprocessing and augmentation steps were processed as described in

detail in the methods section. Each audio sample was transformed into a 2-D, decibel-scaled, and randomly augmented power

spectrogram, corresponding to the final network input. The network converts each input sample into a 1×2 matrix reflecting the

probability distribution of the binary classification problem – killer whale versus noise (any non-killer-whale sound).

Orchive Annotation Catalog (OAC)

The Orchive55, 56 was created by Steven Ness56 and the OrcaLab55, including 23,511 tapes each with ≈45-minute of underwater

recordings (channels: stereo, sampling rate: 44.1 kHz) captured over 23 years in Northern British Columbia (Canada) and

summing up to 18,937.5 h. The acoustic range of the hydrophones covers the killer whales’ main summer habitats in Johnstone

Strait (British Columbia, Canada) by using 6 radio-transmitting, various custom-made stationary hydrophones having an overall

frequency response of 10 Hz–15 kHz89. A two-channel audio cassette recorder (Sony Professional, Walkman WM-D6C or Sony

TCD-D3) was used to record the mixed radio receiver output by tuning to frequencies of the remote transmitters89. The entire

hydrophone network was continuously monitored throughout day and night during the months when Northern Resident killer

whales generally visit this area (July – Oct./Nov.) and was manually started when killer whales were present. Based on the

Orchive, the OrcaLab55, Steven Ness56, and several recruited researchers extracted 15,480 human-labeled audio files (Orchive

Annotation Catalog (OAC)) through visual (spectrogram) and aural (audio) comparison, resulting in a total annotation time

of about 12.3 h. The Orchive tape data, as well as the OAC corpus, is available upon request55, 56. A more detailed overview

about the recording territory of OrcaLab55 is shown in Figure 3b. The annotations are distributed over 395 partially-annotated

tapes of 12 years, comprising about 317.7 h (≈1.68 % of the Orchive). The killer whale annotations contain various levels of

details, from labels of only echolocation clicks, whistles, and calls to further knowledge about call type, pod, matriline, or

individuals. The original OAC corpus contains 12,700 killer whale sounds and 2,780 noise clips. Of about 12,700 labeled

killer whale signals only ≈230 are labeled as echolocation clicks, ≈40 as whistles, and ≈3,200 as pulsed calls. The remaining

≈9,230 killer whale annotations are labeled very inconsistently and without further differentiation (e.g.“orca”, “call”) and

therefore do not provide reliable information about the respective killer whale sound type. The annotated noise files were
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split into human narrations and other noise files (e.g. boat noise, water noise, etc.). Human voices are similar to pulsed calls

considering the overlaying harmonic structures. For a robust segmentation of killer whale sounds human narrations were

excluded. Furthermore, files that are corrupted, mislabeled or have bad qualities were excluded. Summing up, 11,504 labels

(9,697 (84.3 %) killer whale, 1,807 (15.7 %) noise) of the OAC corpus (Table 1) were used and split into 8,042 samples (69.9 %)

for training, 1,711 (14.9 %) for validation and 1,751 (15.2 %) for testing. Audio signals from each single tape were only stored

in either train, validation or test set.

Automatic Extracted Orchive Tape Data (AEOTD)

OAC has an unbalanced killer whale/noise distribution. As a solution, 3-second audio segments were randomly extracted

from different Orchive tapes, machine-labeled by an early version of ORCA-SPOT, and if applicable manually corrected. The

evaluation was done by listening to the machine-segmented underwater signals as well as verifying the respective spectrograms

in parallel. In total this semi-automatically generated dataset (AEOTD) contains 17,995 3-second audio clips. AEOTD consisted

of 1,667 (9.3 %) killer whale and 16,328 (90.7 %) noise files. During validation, very weak (silent) parts (no underwater noise

or any noticeable signal) of the tapes as well as special noises (e.g. microphone noises, boat noises, etc.), which are not part of

the OAC corpus, were increasingly detected as killer whales, contributing to a growing false-positive-rate. Therefore, very

weak (silent) audio samples were added to the training set only. As for OAC the 17,995 samples were split into 14,424 (80.2 %)

training, 1,787 (9.9 %) validation and 1,784 (9.9 %) test clips (Table 1). Similarly, annotations from each single tape were only

stored in one of the three sets.

DeepAL fieldwork data 2017/2018 (DLFD)

The DeepAL fieldwork data 2017/2018 (DLFD)90 were collected via a 15-m research trimaran in 2017/2018 in Northern British

Columbia by an interdisciplinary team consisting of marine biologists, computer scientists and psychologists, adhering to the

requirements by the Department of Fisheries and Oceans in Canada. Figure 3a visualizes the area which was covered during

the fieldwork expedition in 2017/2018. A custom-made high sensitivity and low noise towed-array was deployed, with a flat

frequency response of within ±2.5 dB between 10 Hz and 80 kHz. Underwater sounds were digitized with a sound acquisition

device (MOTU 24AI) sampling at 96 kHz, recorded by PAMGuard91 and stored on hard drives as multichannel wav-files (5

total channels, 4 hydrophones in 2017 plus 1 additional channel for human researchers; 24 total channels, 8 channels towed

array, 16 channels hull-mounted hydrophones in 2018). The 2017/2018 total amount of collected audio data comprises ≈157.0

hours. Annotations on killer whale vocalizations were made by marine biologists through visual and aural comparison using

Raven Pro 1.592 and John Ford’s30 call type catalog. In total the labeled 2017/2018 DeepAL fieldwork data (DLFD)90 includes

31,928 audio clips. The DLFD datset includes 5,740 (18.0 %) killer whale and 26,188 (82.0 %) noise labels. The total amount

of 31,928 audio files was split into 23,891 (74.8 %) train, 4,125 (12.9 %) validation, and 3,912 (12.3 %) test samples (Table 1),

whereas samples of different channels of a single tape were only stored in one set.

Results

The results are divided into three sections. The first section investigates the best ORCA-SPOT network architecture (Figure 4).

Once the architecture was chosen, ORCA-SPOT was trained, validated and tested on the dataset listed in Table 1. Validation

accuracy was the basis for selecting the best model. First, two model versions of ORCA-SPOT (OS1, OS2) were verified on the

test set. OS1 and OS2 utilized identical network architectures and network hyperparameters. Both models only differed in the

number of noise samples included in the training set and the normalization technique used within the data preprocessing pipeline

(dB-normalization versus mean/standard deviation (stdv) normalization). Due to identical network setups and an inconsistent

training data corpus, the main intention of such a model comparison was not to directly compare two different networks, but

rather illustrating the proportion of changing network independent parameters in order to further improve the overall model

generalization and (unseen) noise robustness. In a second step we ran OS1 and OS2 on 238 randomly chosen ≈45-minute

Orchive tapes (≈191.5 h audio), calculating the precision. Additionally OS1 and OS2 were evaluated on 9 fully-annotated,

≈45-minute Orchive tapes, which were chosen based on the number of killer whale activities. The AUC metric was used to

determine the accuracy of classification.

Network Architecture

ORCA-SPOT was developed on the basis of the well-established ResNet architecture93. Two aspects were reviewed in greater

detail: (1) traditional ResNet architectures with respect to their depth and (2) removal/preservation of the max-pooling layer

in the first residual layer. The behavior of deeper ResNet architectures in combination with the impact of the max-pooling

layer (3×3 – kernel, stride 2) in the first residual layer were examined in a first experiment. ResNet18, ResNet34, ResNet50,

and ResNet101 were used as common ResNet variants. All these traditional and well-established network architectures are

described in detail in the work of He et al.93. Each model was trained, developed and tested on the dataset illustrated in
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Table 1 in order to handle the binary classification problem between killer whale and noise. The test set accuracy, using a

threshold of 0.5 (killer whale/noise), was chosen as a criterion for selecting the best architecture. In three evaluation runs under

equal conditions (identical network hyperparameters, equal training/validation/test set, and same evaluation threshold) the

max-pooling option was investigated together with various ResNet architectures. Random kernel-weight initializations and

integrated on-the-fly augmentation techniques led to slight deviations with respect to the test accuracy of each run. For each

option and respective ResNet model, the maximum, mean, and standard deviation of all three runs was calculated. Table 2

shows that deeper ResNet models do not necessarily provide significant improvements on test set accuracy. This phenomenon

can be observed in cases of removing or keeping max-pooling. Models without max-pooling in the first residual layer displayed

an improvement of ≈1 % on average. Furthermore, the marginal enhancements of the averaged test set accuracy during the

application of deeper ResNet architectures resulted in much longer training times on an Nvidia GTX 1080 (ResNet18 =≈4 h,

ResNet34 =≈6 h, ResNet50 =≈8 h, ResNet101 =≈10 h). Apart from the training time, the inference time of deeper networks

was also significantly longer. ResNet18 processed an Orchive tape of ≈45-minutes length within about 2 minutes. ResNet34

took about 3.5 minutes and ResNet50 lasted about 5 minutes, resulting in a real-time factor of 1/13 and 1/9 compared to

ResNet18 with 1/25. The entire Orchive (≈19,000 hours) together with four prediction processes (Nvidia GTX 1050) running in

parallel resulted in a computation time of eight days for ResNet18, 14 days for ResNet34, and 20 days for ResNet50. Compared

to ResNet18, none of the deeper ResNet architectures led to a significant improvement in terms of mean test set accuracy.

ResNet18 performed on average only ≈0.5 percent worse than the best architecture (ResNet50) but was more than twice as fast

relating to training and inference times. For all other ResNet architectures, the differences in accuracy were even smaller. As

the final network architecture, ResNet18 without max-pooling in the first residual layer was chosen, in order to maximize the

trade-off between accuracy and training/inference times. In particular, the second aspect is very important in terms of using

the software on the vessel in the field. Due to limited hardware and the requirement to parse the incoming audio data in quasi

real-time (killer whale versus noise), a good network performance is of essential importance. ResNet18 performs well, even on

a mid-range GPU.

ORCA-SPOT – training/validation/test set metrics
This section describes in detail the training, validation, and testing process of two different models, named ORCA-SPOT-1

(OS1) and ORCA-SPOT-2 (OS2). Both models depend on the same modified ResNet18 architecture and used identical network

hyperparameters. During the entire training and validation phase the following metrics were evaluated: classification accuracy

(ACC), true-positive-rate (TPR, recall with respect to “killer whale”), false-positive-rate (FPR), and positive-predictive-value

(PPV, precision with respect to “killer whale”). The AUC was used to describe the test set results. All metrics, calculated after

every epoch, are visualized in Figure 5. OS2 implements a dB-normalization (min = -100 dB, ref = +20 dB) between 0 and 1,

whereas OS1 includes a mean/stdv – normalization approach. Especially tapes without any noticeable underwater/killer whale

sound activities led to extreme values regarding the mean/stdv – normalization due to a standard deviation close to zero causing

higher false positive rates. To counteract this problem of very weak (silent) signals a dB-normalization was performed within a

fixed range (0 – 1). OS2 was trained on the training set displayed in Table 1. The training set of OS2 differs from the training

set of OS1 by containing 6,109 additional noise samples in the AEOTD corpus. The main motivation was to further improve the

generalization and noise robustness of the model by adding more additional unseen noise samples. Those noise samples were

previously represented in neither train nor validation or test set, since they are not included in the annotated OAC or DLFD

corpus, but only occur in the Orchive. Consequently, adding such noise characteristics only to the training will most likely

not improve the metrics on the test dataset. However, an improvement is expected when it comes to the evaluation of unseen

Orchive tape data. The model with the best validation accuracy was picked to run on the test set. Figure 5 shows that OS2

performed slightly better than OS1. The similarities in terms of validation and test metrics between both models were expected,

because those additional noise files were only added to the training set. Moreover, the validation/test data (Table 1) do not

completely reflect the real situation of the Orchive. A considerable amount of very weak (silent) audio parts and special/rare

noise files was observed in those tapes. Slightly better results of OS2 are primarily a consequence of the changed normalization

approach. However, additional noise files had a positive effect on the analysis of the entire, enormously inhomogeneous,

Orchive data. Based on the 7,447 test samples (Table 1) combined with a threshold of ≥ 0.5 (killer whale/noise), OS1 achieved

the following results: ACC = 94.66 %, TPR = 92.70 %, FPR = 4.24 %, PPV = 92.42 %, and AUC = 0.9817. OS2 accomplished

the following results: ACC = 94.97 %, TPR = 93.77 %, FPR = 4.36 %, PPV = 92.28 %, and AUC = 0.9828. For handling the

extreme variety of audio signals in the ≈19,000 hours of underwater recordings, it is particularly important to have a well

generalizing and robust network which can reliably segment.

Orchive
In a next step, OS1 and OS2 were applied to all 23,511 Orchive tapes. Each tape was processed using a sliding window

approach with a window size of 2 s and a step size of 0.5 s. More detailed information about all different evaluation scenarios is

given in the methods section. All resulting audio segments were classified by OS1 and OS2 into “noise” or “killer whale”.
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The threshold for detecting “killer whale” and calculating the PPV was set to ≥ 0.85 for both models. Based on the detected

killer whale time segments, annotation files were created in which contiguous or neighboring killer whale time segments

were combined into one large segment. By having a small step size of 0.5 s and thus a high overlap of 1.5 s, neighboring

segments in general were similar. To exploit this property, an additional smoothing method was introduced to deliver more

robust results. Detected “noise” segments were assigned as “killer whale”, if they are exclusively surrounded by classified

“killer whale” segments. Neighboring segments are segments that contain signal parts of the preceding or following overlapping

time segments. This procedure removed single outliers in apparent homogeneous signal regions classified as “killer whale”.

Due to the applied smoothing temporally short successive killer whale sound segments are combined into larger segments.

Because of the extraordinary amount of data, manual evaluation was limited to 238 tapes (≈191.5 hours). Considering a

confidence level of 95.0 % with respect to 23,511 Orchive tapes corresponds to an error margin of about 6.0 % when evaluating

238 tapes. For each year, a number of tapes was randomly selected, ranging from 6 to 22 per year. Every selected tape was

neither included in the training nor in the validation set of OS1 and OS2. All extracted killer whale segments were manually

verified by the project team. Each of the audio clips, segmented and extracted as killer whale, was listened to, and in addition

visually checked by verifying the spectrograms. Time segments containing ≥ 1 killer whale signal were considered as TP,

whereas time segments with no killer whale activation were regarded as FP. Human voice encounters were excluded from the

evaluation. Table 3 visualizes the results of 238 verified Orchive tapes. In the first column (Y) each of the 23 years is displayed.

The second column (T) illustrates the total numbers of processed tapes per year. The rest of the Table is separated into: detected

killer whale segments (S) and metric (M). The killer whale segments were split into total, true and false killer whale segments.

The extracted killer whale parts were analyzed by using two different units – samples and time in minutes. The PPV has been

calculated for both models, also in a sample- and time-based way. The last row of Table 3 displays the final and overall results.

The maximum clip length for OS1/OS2 was 691.0/907.5 seconds. On average, the classified killer whale segments for OS1/OS2

were about 5.93/6.46 seconds. OS1 extracted in total 19,056 audio clips (31.39 h), of which 16,646 (28.88 h) segments were

true killer whale sounds and 2,410 (2.51 h) clips were wrongly classified. This led to a final sample- and time-based PPV of

87.35 % and 92.00 %. OS2 extracted in total 19,211 audio clips (34.47 h), of which 17,451 (32.13 h) segments were true killer

whale sounds and 1,760 (2.34 h) segments were wrongly classified. This led to a final sample- and time-based PPV of 90.84 %

and 93.20 %. As already expected, OS2 generalized better on the very heterogeneous Orchive data. Overall, with almost the

same number of total detected segments, about 3.08 h (155 clips) less audio was found by OS1. A segment difference between

OS1 and OS2 resulted in 805 TP and a time distinction of 3.25 h. In case of the FP, 650 different segments led to a total time

disparity of 0.17 h. OS2 reduced the ≈191.5 h (238 Orchive tapes) underwater recordings to 34.47 h of killer whale events,

which means roughly 18.0 % of the audio data contains interesting killer whale events with an actual time of 32.13 h true killer

whale sounds and 2.34 h false alarms. Extrapolating these values to the entire 18,937.5 hours of Orchive recordings, one could

estimate that the entire Orchive contains roughly 3,408.75 hours of interesting killer whale signals.

ROC results Orchive tapes

In a final step, both models were analyzed on 9 fully-annotated Orchive tapes (in total ≈7.2 h). The classification accuracy

of both models, per tape and in total, was given via the AUC. The 9 tapes were chosen out of the previously selected 238

tapes based on the number of killer whale activities. Three tapes were selected with high, medium, and low number of killer

whale actions. Due to our chosen sequence length of 2 seconds, combined with the selected step size of 0.5 seconds, the

network classified 5,756 segments per tape. Human voice encounters were excluded from the evaluation. Human voices are

spectrally similar to the killer whale pulsed calls (fundamental frequency and overlaying harmonics). Consequently the network

segmented human speech as potential killer whale signals within those noise-heavy underwater recordings. Usually those

sounds are not present in underwater recordings. Due to the fact that such problems are technically preventable, segmented

human narrations were considered neither wrong nor correct, and were excluded from the evaluation. During manual listening

of the extracted segments of the 238 tapes, all human narrations were stored in extra folders, not affecting the final result. The

same was done for evaluating the fully annotated tapes. With a segment-wise comparison, all segments containing human

speech were removed and discarded. The following number of killer whale events were encountered by the annotators: 2006

341A (high): 277, 1988 061A (high): 313, 2005 739B (high): 276, 1989 120A (medium): 202, 1991 292B (medium): 91,

2009 104A (medium): 77, 1988 068B (low): 6, 1993 163B (low): 11, 1998 412A (low): 14. On average, the tapes with

high, medium, and low killer whale activities had 6.09, 2.60 and 0.22 annotations per minute. In addition to segment-wise

comparison (OS1, OS2) a smoothed variant, based on the previously mentioned smoothing technique, was realized for both

models (OS1-S, OS2-S). Figure 6 visualizes the results by presenting ROC curves and AUCs for each of the 9 tapes and also

an entire ROC curve based on accumulated results of all 9 tapes. In this case, we added up the threshold-specific confusion

matrices to calculate TPR and FPR. Please note that the overall ROC curve can deviate strongly from the ROC curve of the

individual tapes, since the killer whale activities per tape varies by a factor of up to 95 (≈17 s versus ≈27 min per ≈45 min

tape). In summary, the model OS2/OS2-S performed better, especially on noisier data considering the AUC of 0.9428/0.9523.
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With respect to the overall ROC curve for OS2-S (0.9523), the killer whale segmentation successfully reduced the total duration

of all 9 tapes (≈7.2 h) to interesting signal parts. By extracting 93.0 %, 96.0 %, or 99.0 % of all valid killer whale sound events

the entire 7.2 hours of underwater recordings were reduced to 2.14 h, 2.91 h and 4.75 h. FPR values of 5.0 %, 10.0 % and

15.0 % resulted in 81.9 %, 88.3 % and 91.9 % true killer whale detections and consequently reduced the total duration to 1.30 h,

1.68 h and 2.02 h. Considering the 9 selected tapes as a representative sample of the ≈19,000.0 hours of Orchive data led to the

following results: finding 96.0 % of all killer whale activities reduce the Orchive to 7,653.9 h (0.87 years) whereas 5.0 % false

alarms and 81.9 % killer whale detection shrinks the Orchive down to 3,419.3 h (0.39 years). OS2-S, based on the 9 tapes, and

FPR values of 5.0 %, 10.0 % and 15.0 % achieved accuracies of ACC = 92.82 % ACC = 89.75 % and ACC = 86.26 %.

Discussion

In the current study, a CNN-based pipeline was developed, in order to examine audio signals regarding certain valuable,

user-specific bioacoustic events. Generalizing the pipeline makes it possible to also apply this approach to other animal species.

The illustrated segmentation process is equivalent to a pre-filtering of relevant and desired acoustic events from uninteresting

and superfluous signals. To improve the segmentation it is important to model the huge variety of noise. Various augmentation

techniques and additional noise files were used to tackle this problem and a dB-normalization was used for OS2 in order to also

handle very weak signals. Mel-spectrograms as a network input led to an excessive loss of resolution in higher frequency bands,

which was a big problem considering the high-frequency pulsed calls and whistles. In addition to the selection of a suitable

network architecture (Table 2), the distribution of training data is also of crucial importance. The Orchive contains much more

noise than killer whale activities. It must be ensured that the training/validation dataset matches the unseen testing environment

best. In order to avoid misclassifications due to an unbalanced dataset, OS2 was trained on additional noise files (5,655 very

weak (silent) and 454 special/rare noises), in order to better represent the spread of noise characteristics within the Orchive.

Adding those files led to a killer whale/noise ratio of 1:3 (Table 1) in the training set.

During network training/evaluation several challenges were observed. One challenge is a robust detection of echolocation

clicks. Echolocation clicks resemble many of the noise files and are very hard to distinguish from noise, even for human

hearing (Figure 7). The chosen FFT-size of 4,096 led to an excessive loss of accuracy in time. Smaller FFT-sizes result in large

frequency resolution losses, which drastically affect the detection accuracy of pulsed calls and whistles. Another challenge

is stationary boat (engine) noise. Such signals are reflected in spectrograms as stationary frequency bands. Typically, these

stationary frequency bands were within the frequency ranges (1.5 kHz – 18 kHz) of killer whale pulsed calls and whistles

(Figure 7). Due to the confusion between overlaying killer whale harmonics and stationary boat noises at certain frequencies

such signals were often misinterpreted. However, the indicated problem did not relate exclusively to stationary boat noises.

There were several encounters of other special noises (e.g. “beeps”), caused by the recording devices, which have a similar

impact. Another problem observed during evaluation of the 238 tapes was a considerable amount of noise before, between, and

after extracted killer whale segments. Some segments also contain overlapping vocalizations of different animals or multiple

types of killer whale vocalizations.

We wanted to discuss the model results in two different ways: First, compare OS1 with OS2 according to the conducted

experiments and results achieved within this work. Second, compare our best model with other bioacoustics research results.

The latter, in terms of comparing the general approach and resulting metrics one-to-one with other bioacoustic studies, was not

possible. To the best of our knowledge, there are no comparable published results on any known data corpus. The methodical

differences between previously published individual studies which made a comparison of our results with them impossible

were among others: (1) other animal species, (2) size of the dataset, (3) different methodologies, and (4) varying evaluation

metrics. Therefore, our discussion of previously published studies is not a direct comparison to other work, but more or less an

overview of similar studies in bioacoustics in order to show that the way of proceeding is reasonable and valid.

Figure 5 shows that training and validation metrics of both models behave similarly during training. OS1, having an AUC of

0.9817, and OS2, with an AUC of 0.9828, almost had identical results on the test set (Table 1). For both models, differing

in training sample size and normalization, there are no indications of over-/underfitting (see training/validation accuracy and

test set AUC in Figure 5). Table 3 shows that OS2 outperformed OS1 on the 238 verified tapes. OS2 had fewer FP than OS1.

Moreover, the detection rate of OS2 regarding the TP segments was significantly higher as well. A more robust detection

of noise segments resulted in fewer misclassifications and in a more accurate detection of true noise/killer whale segments.

Usually FP were single outliers surrounded by noisy signal parts. Therefore, such signal pieces normally have a much shorter

duration per clip and consequently were not affected by smoothing due to isolation by adjacent noisy signal segments. Thus, a

considerable difference in the number of segments only led to a very small difference in useful vocalization of killer whales

time. Additionally trained noise files led to a significant reduction of such outliers. Moreover, the misclassifications regarding

FN dropped as well. Detected killer whale segments were often affected by smoothing. Typically, killer whale signals are

not just single events within a noisy environment. Thus, the detection of a killer whale sound, previously classified as FN, in

conjunction with the smoothing technique of ORCA-SPOT, tends to result in larger segments, such as an outlying FP. Table 3
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also visualizes that OS2 does not consistently perform better on all 23 years. There were outliers, such as the years 1995 and

1996, where the network performance was significantly worse. Such incidents need to be examined in order to improve network

performance.

Figure 6 also demonstrated that OS2 generalized better on unseen data. The AUC deviations in Figure 6 were considered under

two different aspects: (1) AUC variations between the models (OS1 and OS2), and (2) AUC differences over the tapes. In

general, the AUC deviations of OS1 and OS2 depend on the network robustness with respect to noise and consequently the

ability of the model to generalize. Furthermore, the utilized dB-normalization of OS2 also had a positive impact with respect

to very weak (silent) signals and potential false alarms. Both model types (OS1/OS2 and OS1-S/OS2-S) performed similar

on the tapes with high killer whale activity. This was expected to some extent, since, with an increase of killer whale activity

and a decrease of noise, it is primarily important to detect killer whale signals with correspondingly high accuracy rather than

noise segments and vice versa. Significant differences were observed in noisier data. OS1 is trained with less noise than OS2.

Consequently the killer whale/noise ratio of the training set (Table 1) of OS1 is larger and thus the model is less capable of

correctly recognizing noise, resulting in more false alarms. Considering the medium tapes, OS1/OS2 delivered significantly

different results. Since, in these tapes neither the killer whale nor the noise components were overrepresented, it is particularly

important to consider a well-specified trade-off between killer whale/noise representations. Due to the similarities regarding

the noise and killer whale distribution, such tapes reflect the actual difference between the models particularly well, as they

are considered to be representative without preferring one of the two classes. A so-called representative tape depends on the

desired intention (many killer whale detections versus few misclassifications). The variation in AUC over different tapes was

mainly caused by (unseen) noise data, noise data superficially similar to killer whale vocalizations (e.g. high-frequent electric

boat noise, different microphone settings or artefacts, noise similar to echolocation clicks, etc.) and by the total number of

killer whale sounds per tape, highly affecting the impact of potential false positives (FPR) and hence the AUC. Figure 7 shows

spectrograms of examples of noises superficially similar to killer whale vocalizations which were segmented as killer whale

sounds. These different types of noise spectrograms reflect many of the detected false positives. The spectral envelope of those

examples is undoubtedly very similar to potential killer whale sounds. Figure 7a and 7d are very similar to a killer whale

whistle (narrow band tone without harmonics). The spectral content of 7c and 7f is very similar to the spectral content of

echolocation clicks. The signal structures of Figure 7b, 7e, and 7g show some activity within the lower frequency regions that

could be associated with some potential killer whale call activities. During the evaluation and detailed analysis of the false

alarms, another phenomenon was discovered. Many of them had stationary frequency bands within higher frequency parts, like

Figure 7a, 7c, 7e, and 7g. Such a signal characteristic was often confused with the superimposed high-frequency harmonics of

pulsed calls or considered as whistles.

Significant differences between both models were observed especially for the tape 1998 412A. This tape contains only a few,

weak, isolated, short and noisy killer whale sounds, which were really hard to identify. In addition, false positives had a very

high impact on the AUC due to very few killer whale sounds in total. However, the trained noise representation and different

normalization technique of OS2 generalized much better.

In summary OS2 generalizes significantly better on unseen data and is therefore much more appropriate to handle the large

signal variety of ≈19,000 h underwater signals. The 9 tapes were additionally evaluated with the best ResNet50 model (Table 2).

With an overall AUC of 0.9413 and 0.9519 (non-smoothed/smoothed) ResNet50 achieved almost identical results as ResNet18,

which is another reason to use the much faster ResNet18 architecture.

As already mentioned, a comparison to previous research work is not so easy because there is no similar work with respect

to the utilized data, methods and results. In order to emphasize the value of the work and our best network model (OS2),

similar bioacoustic works were named without any direct comparison. Ness56 built a classifier to segment between killer whale

sounds, noise and human voices. He used a dataset containing 11,041 manually labeled audio files from the Orchive tapes,

sampled at 44.1 kHz. A support vector machine (SVM) using a radial basis function kernel resulted in an ACC of 92.12 %

using cross-validation. Grill et al.86 used CNNs for bird audio detection. The model consists of 4 convolutional/pooling-layers

plus 3 fully-connected layers. It was trained on mel-scaled log-magnitude spectrograms and integrates several augmentation

techniques. Grill et al.86 won the bird audio detection challenge 2018 (see Stowell et al.79) achieving an AUC of 0.9750 by using

cross-validation and a final submission AUC of 0.8870 on the hidden test set. Himawan et al.87 used CNN and convolutional

recurrent neural network (CRNN) detecting koala sounds in real-life environment. Both models have 3 convolutional/pooling-

layers plus 2 fully-connected layers87. The CRNN includes an additional LSTM-layer between the convolutions and dense

layers87. Himawan et al.87 trained on 2,181 koala and 4,337 non-koala log-scale spectrograms, sampled at 22.05 kHz. CNN

(AUC = 0.9908) and CRNN (AUC = 0.9909) achieved similar results using cross-validation. Furthermore Himawan et al.87

applied both models to bird audio detection achieving AUCs of 0.8357 (CNN) and 0.8746 (CRNN). In a recent work of Google,

Harvey et al.57 trained a CNN in order to detect humpback whale audio events in 15 years of underwater recordings. Harvey et

al.57 used ResNet50, trained on 0.2 % of the entire dataset. The model was evaluated by identifying whether a 75-second audio

clip contains humpback calls. Harvey et al.57 indicated a precision over 90 % together with a TPR of 90 %.
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This is the first study using deep learning in order to verify the general feasibility of creating a robust, reliable, machine-driven,

and animal sound independent segmentation toolkit by taking the killer whale as a prototype and extensively evaluating the

models on a 19,000 hour large killer whale data repository – the Orchive55.

During this research study, several interesting and also necessary future aspects for work have emerged. First of all, it is

necessary to examine wrong classifications (see common false positives in Figure 7) and outlying tapes in order to detect

potential problems or challenges and use the cleaned data for re-training of ORCA-SPOT to ensure an iterative improvement

and better generalization. Unsupervised machine-learning techniques are used to identify such common and characteristic

noise misclassifications. Subsequently samples of machine-clustered noise classes are selected in order to add them to the

training and/or design auxiliary preprocessing steps or slightly different model architectures to better handle such critical noise

signals. In addition, it has to be considered to what extent individual calls can be extracted from the segments containing

multiple calls, how to remove the remaining noise in the segments, and how to deal with overlapping calls. Consequently, fine

tuning of the already existing segments is a very important aspect. In order to further reduce remaining/surrounding noise

within pre-segmented killer whale segments or to split up segments containing multiple killer whale sounds into single-sound

segments, an iterative segmentation approach (shorter sequence length and step size) is a possible solution to create finer

structures. Nevertheless, overlapping calls will still be included in one segment. It is important to first identify and encapsulate

all these segments in a post-process, e.g. via unsupervised clustering, in order to avoid any negative impact of such segments

regarding potential call type classification training. A call type classifier trained on machine-identified and clustered killer

whale call types, by using the large amount of pre-segmented signals, is a possible method to identify potential call types in

such overlapping structures in order to separate them somehow. While this study focuses on a pure segmentation between

potential killer whale sounds and various noises (binary classification problem), first and prelimnary experiments/results on

call type classification have already been carried out94. A ResNet18-based classifier was trained on a small dataset in order to

classify 12 different classes of vocalizations (9 call types, whistles, echolocation clicks, and noise). The resulting call type

classifier achieved a mean test set accuracy of 87.0 % on a 12-class problem94. In addition, the extracted segments from 19,000

hours of underwater recordings provide a very powerful basis for various automatic, fully unsupervised machine-learning

approaches, e.g. representation learning followed by clustering to derive machine-identified killer whale call types. At the same

time, many other advantages would also arise here: (1) no data annotation required, (2) eliminating human errors (e.g. labeling

based on human perception, misclassifications, etc.), (3) analysis of large data corpora possible, and (4) deriving potential

unknown killer whale call type structures, e.g. sub-call types.

In future work, we will also have to evaluate whether it is better to train the echolocations in a separate network. In addition,

the scope of future research will be broadened to include experiments on different and optimized network architectures. There

should be also investigations in the field of CRNN in order to tackle problems of how to differentiate between stationary and

varying frequency characteristics (e.g. caused by electric boat noise). Both problems become particularly clear in Figure 7.

Furthermore, it is useful to investigate ResNet50 and its detection accuracy. Further detailed call analyses, combined with

the collected video recordings and behavioral descriptions, accumulated in the project DeepAL by various biologists, offer

possibilities to gain a deeper understanding of killer whale communication. Considering all the above-mentioned future work,

the maintenance of the current pipeline needs to be ensured, in order to present a stand-alone system, which can be adapted to a

variety of bioacoustical data corpora, together with the corresponding training data. Last but by no means least, ORCA-SPOT

will subsequently be prepared to be deployed in July 2019 in British Columbia as a quasi real-time killer whale detection

system during the fieldwork. Further evaluation regarding the extent to which ORCA-SPOT can be able to assist the search of

the animals efficiently and purposefully will be conducted on the field mission in July 2019.

To summarize, ORCA-SPOT allows a robust pre-segmentation of large bioacoustic datasets into relevant and irrelevant signal

parts. Researchers can concentrate on those sub-data containing only interesting bioacoustic events. According to the OS2-S

overall ROC curve and the results based on the 238 evaluated 45-minute tapes, 80 % of all killer whale activations and 5 %

misclassifications reduced the whole Orchive by about 80 % to 0.4 years.

Methods

This section describes network architectures, methods, and algorithms used for training and implementation of ORCA-SPOT.

Besides a brief overview about the ORCA-SPOT architecture, data preprocessing, network training, network evaluation and

testing is explained.

Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is an end-to-end deep neural network architecture in machine learning that is able to

efficiently handle the complexity of 2-dimensional input data (e.g. spectrograms)95. CNNs are built on the principle of pattern

recognition and consist of a feature extraction/learning component and a classification part95, 96. The convolutional layers are

responsible for feature learning/extraction and are characterized by three significant architectural concepts: local receptive
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fields, shared weights and spatial or temporal subsampling (pooling)95. Convolving the kernel over the entire input by a defined

shifting size (stride), covering a certain receptive field, results in multiple (hidden) units, all sharing the same weights and

combined together in one single feature map95. Usually a convolutional layer consists of multiple feature maps (channels) in

order to learn multiple features for the same position95. CNN architectures include pooling layers to reduce the resolution of a

feature map by calculating a localized statistic. Convolutional layers only calculate linear operations. Thus, a non-linear layer

using an activation function, usually the Rectified Linear Unit (ReLU)97 function, is added. Furthermore, a normalization layer

(e.g. batch normalization98) is added to ensure a stabilized distribution of the activation values98. The extracted and learned

features based on several, repetitive and configurable sequences of convolutional, normalization, activation, and pooling layer,

are now projected onto the corresponding output classes using one or more fully connected layers. Consequently, the fully

connected layers are responsible for the classification.

ORCA-SPOT architecture

A network consisting of concatenated residual layers (see He et al.93) is called residual network (ResNet). In practice there

exist different and approved ResNet architectures (see He et al.93), based on the number of concatenated layers. A detailed

description about deep residual learning in general can be found in the work of He et al.93. Figure 4 visualizes the proposed

ORCA-SPOT architecture corresponding to the established ResNet1893 architecture, except that in the first residual layer

the max-pooling layer was removed. The main intention was to process the data with a preferably high resolution as long as

possible. This max-pooling layer in combination with a stride of 2 leads to a big loss of resolution already at the initial stage.

This is a disadvantage regarding high-frequency subtle killer whale signals. After the last residual layer, global average pooling

is performed on the bottleneck training features, consisting of 512 feature maps with 16×8 hidden units. These results are now

connected to a 512-D fully connected layer, projecting its output onto two output classes: “killer whale” and “noise”.

Data Preprocessing and Training

ORCA-SPOT converts every audio clip into a 44.1 kHz mono wav-signal. The remaining signal was transformed to a power

spectrogram using a fast Fourier transform (FFT) using a FFT-size of 4,096 samples (≈100 ms) and a hop-size of 441 samples

(≈10 ms). In a next step the power spectrogram was converted to decibel (dB) scale. Based on the chosen sampling rate

and FFT-size each training file was represented by a 2,049×T feature matrix, where T represents the time dimensionality

of the input. In order to obtain the largest possible variety of training variants and to simultaneously handle available disk

space, the augmentation was performed in an embedded way rather than generating augmented samples on the hard disk. The

augmentation used the previously decibel-converted power spectrogram as input. All augmentation techniques were processed

on-the-fly. The augmentation was computationally very expensive because of various random sampling/scaling operations.

Consequently, this was implemented using PyTorch99 multiprocessing in order to process the entire pre-processing on the

CPU in parallel, whereas the network training utilized the GPU. In a first step intensity, pitch, and time augmentation were

conducted. Random scalings based on a uniform distribution were performed within predefined ranges: amplitudes/intensity

(-6 dB– +3 dB), pitch factor (0.5 – 1.5), and time factor (0.5 – 2.0). The frequency dimensionality of the augmented spectral

result was compressed by using a linear frequency compression (nearest neighbor, fmin = 500 Hz, fmax = 10 kHz). The number

of frequency bins was reduced to 256, resulting in a final spectral shape of 256×T. In a second augmentation step noise

augmentation was carried out. A pitch- and time-augmented frequency-compressed noise spectrogram from the training set was

added to the spectrogram using a random-scaled (uniformly distributed) signal-to-noise ratio (SNR) between -3 and +12 dB.

Longer noise files were cut and shorter noise signals were self-concatenated in order to match the time dimensionality of the

training spectrogram. The noise augmentation is followed by a dB-normalization (min = -100 dB, ref = +20 dB) between 0 and

1. For a successful training process, it is essential to have equally-sized (frequency and time dimensionality) training data.

Consequently, the current spectral shape of 256×T requires a constant time domain. This was solved by randomly subsampling

or padding the resulting training spectrogram (256×T) being longer or shorter than 1.28 s in order to derive a final trainable

spectral shape of 256×128.

In summary, the following data preprocessing/augmentation pipeline, implemented in PyTorch99, was realized by ORCA-SPOT:

convert audio to mono, resampling to 44.1 kHz, power spectrum, dB-conversion, intensity augmentation, pitch augmentation,

time augmentation, linear frequency compression, noise augmentation, dB-normalization, and accidental subsampling/padding

to get a trainable clip for the ORCA-SPOT network. In order to be able to compare the validation/test set to multiple models,

shorter/longer validation and test signals than 1.28 s were always centered and not randomly extracted/padded. The model

was trained and implemented using PyTorch99. ORCA-SPOT uses an Adam optimizer with an initial learning rate of 10−5,

β1 = 0.5, β2 = 0.999 and a batch-size of 32. After four epochs and no improvements concerning the validation set, the learning

rate decayed by a factor of 1/2. The training stopped if the validation accuracy did not improve within 10 epochs. Finally, the

model with the best validation accuracy was selected. The test set was only used to evaluate the final model performance and

was neither involved in the training nor in the validation.
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Evaluation and Testing
ORCA-SPOT was verified on two different test scenarios. On the one hand, the model was evaluated on the test data described

in Table 1, and on the other hand ORCA-SPOT was applied to the 23,511 Orchive tapes (≈18,937.5 hours). In the first case

there were already labeled test audio clips as a benchmark, provided as input to the model using a centered 1.28 s window.

In the second case, the raw Orchive tapes were evaluated. Audio clips of a given configurable sequence length (2 s) and step

size (0.5 s) were extracted and fed in its entirety (without centering) to the network. Each of the audio clips resulted in a 1×2

probability matrix that the given signal segment was a killer whale or noise. Consecutive killer whale/noise predictions were

concatenated to one audio slice of multiple calls or noise segments. It is of great importance that the network is able to process

the ≈2.2 years of audio in finite time. The prediction time of the network was adapted and optimized in combination with

a mid-range GPU (Nvidia GTX 1050). For calculating the area-under-the-curve (AUC) and other metrics (accuracy (ACC),

true-positive-rate (TPR), false-positive-rate (FPR), positive-predictive-value (PPV)) we used Scikit-learn100, an open-source

machine-learning library in Python.

Data availability

The Orchive data and the Orchive annotation catalog (OAC) used in this study are available upon request only in agreement

with the OrcaLab55 and Steven Ness56. Following the open science principles, the source code and the DeepAL fieldwork data

2017/2018 (DLFD) are planned to be made freely available88, 90 to the research community and citizen scientists in October

2019 after the current pilot study concludes. Furthermore, all segmented and extracted audio samples, which result from this

study, will be handed over to the OrcaLab55 and Steven Ness56.
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dataset

split
training validation test

samples samples samples

killer whale noise sum % killer whale noise sum % killer whale noise sum %

OAC1 11,504 6,829 1,213 8,042 69.9 1,425 286 1,711 14,9 1,443 308 1,751 15.2

AEOTD1 17,995 1,289 13,135 14,424 80.2 276 1,511 1,787 9.9 102 1,682 1,784 9.9

DLFD 31,928 3,391 20,500 23,891 74.8 1,241 2,884 4,125 12.9 1,108 2,804 3,912 12.3

SUM 61,427 11,509 34,848 46,357 75.5 2,942 4,681 7,623 12.4 2,653 4,794 7,447 12.1

1 Dataset available upon request55, 56

2 Orchive tapes available upon request55, 56

Table 1. Overview datasets and data distribution

Figure 1. Geographic ranges (light shading) of killer whale populations in northeastern Pacific (British Columbia, Canada)

(Illustration recreated after Wiles31)

Arch

Model
ORCA-SPOT-MAX-POOL ORCA-SPOT-NO-MAX-POOL

Accuracy % Statistics % Accuracy % Statistics %

run1 run2 run3 max mean stdv run1 run2 run3 max mean stdv

ResNet18 95.39 93.99 92.84 95.39 94.08 1.28 95.88 96.15 94.40 96.15 95.48 0.94

ResNet34 93.65 95.72 95.20 95.72 94.86 1.08 96.13 95.65 95.12 96.13 95.64 0.51

ResNet50 92.39 95.76 94.88 95.76 94.35 1.75 96.37 95.90 95.61 96.37 95.96 0.38

ResNet101 94.39 95.33 95.01 95.33 94.91 0.47 95.81 94.10 96.24 96.24 95.39 1.13

Table 2. Model accuracies for common ResNet architectures by comparing architectures with and without max pooling (3×3

kernel, stride 2) in the first residual layer
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Orchive tapes

Y &

T

S &

M

detected killer whale segments metric

total segments true killer whale segments false killer whale segments PPV (%)

samples time (min.) samples time (min.) samples time (min.) samples time (min.)

OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2 OS1 OS2

1985 20 1,923 2,072 243.94 279.80 1,835 1,966 240.08 272.78 88 106 3.86 7.02 95.42 94.88 98.42 97.49

1986 7 568 492 43.44 39.40 462 478 38.54 38.84 106 14 4.90 0.56 81.34 97.16 88.72 98.58

1987 9 782 911 63.10 79.70 761 900 61.77 79.28 21 11 1.33 0.42 97.31 98.79 97.90 99.47

1988 10 690 838 66.44 90.93 631 752 63.81 84.26 59 86 2.63 6.67 91.45 89.74 96.05 92.67

1989 9 418 486 35.54 39.80 369 471 32.85 39.06 49 15 2.69 0.74 88.28 96.91 92.43 98.14

1990 10 619 585 67.41 67.18 544 577 63.08 66.89 75 8 4.33 0.29 87.88 98.63 93.57 99.57

1991 10 552 544 41.29 44.16 459 504 35.13 42.22 93 40 6.16 1.94 83.15 92.65 85.09 95.60

1992 10 680 625 58.79 58.89 591 620 54.28 58.67 89 5 4.51 0.22 86.91 99.20 92.32 99.62

1993 9 607 579 93.72 98.58 578 568 92.39 98.13 29 11 1.33 0.45 95.22 98.10 98.59 99.54

1994 9 891 899 89.50 98.13 846 870 87.79 96.83 45 29 1.71 1.30 94.95 96.77 98.09 98.68

1995 8 289 753 18.37 75.23 241 381 16.12 40.30 48 372 2.25 34.93 83.39 50.60 87.75 53.56

1996 9 516 787 48.79 62.88 374 524 30.83 42.57 142 263 17.96 20.31 72.48 66.58 63.19 67.70

1998 10 735 739 90.03 95.37 675 732 87.20 95.11 60 7 2.83 0.26 91.84 99.05 96.86 99.73

1999 10 695 763 66.86 81.47 518 548 56.91 65.53 177 215 9.95 15.94 74.53 71.82 85.12 80.43

2000 6 430 436 46.10 47.53 423 432 45.68 47.35 7 4 0.42 0.18 98.37 99.08 99.10 99.63

2001 13 1,164 1,157 109.41 117.60 1,067 1,138 102.78 116.62 97 19 6.63 0.98 91.67 98.36 93.94 99.16

2002 8 831 808 95.25 106.58 752 786 91.07 105.55 79 22 4.18 1.03 90.49 97.28 95.61 99.03

2003 10 669 710 56.94 59.88 605 697 53.68 58.98 64 13 3.26 0.90 90.43 98.17 94.26 98.50

2004 10 1,132 1,193 110.14 129.52 1,072 1,064 107.43 120.00 60 129 2.71 9.52 94.70 89.19 97.53 92.65

2005 9 1,098 1,254 106.98 147.33 975 1,032 100.98 118.87 123 222 6.00 28.46 88.80 82.30 94.39 80.68

2006 8 1,450 1,240 156.58 134.08 1,046 1,141 127.25 129.39 404 99 29.33 4.69 72.14 92.02 81.27 96.50

2009 12 1,248 1,122 106.22 104.10 955 1,060 86.68 100.63 293 62 19.54 3.47 76.52 94.49 81.60 96.67

2010 22 1,069 218 68.74 10.24 867 210 56.60 9.88 202 8 12.14 0.36 81.10 96.33 82.34 96.42

SUM 238 19,056 19,211 1,883.58 2,068.38 16,646 17,451 1,732.93 1,927.74 2,410 1,760 150.65 140.64 87.35 90.84 92.00 93.20

Table 3. ORCA-SPOT segmentation results based on 238 tapes (≈191.5 hours) distributed over 23 years

Figure 2. Spectrograms of three characteristic killer whale sounds (sampling rate = 44.1 kHz, FFT-size = 4,096 samples

(≈100 ms), hop-size = 441 samples (≈10 ms))
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Figure 3. a) (left) Expedition route and data collection range of DeepAL project 2017/2018 b) (right) A network of

hydrophones and the acoustic range of the OrcaLab55 (Illustration b) recreated after OrcaLab55 and Ness56)

Figure 4. ORCA-SPOT network architecture
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Figure 5. ORCA-SPOT training, validation and test set metrics (Table 1)
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Figure 6. ORCA-SPOT ROC results (AUC) based on 9 (3 high, 3 mid, and 3 low killer whale activity) fully annotated

Orchive tapes

20/21



Figure 7. Spectrograms of noise segments classified by OS2 as potential killer whale sounds (false positives) (sampling

rate = 44.1 kHz, FFT-size = 4,096 samples (≈100 ms), hop-size = 441 samples (≈10 ms), frequency range: 0 – 13 kHz)
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