

Semi-automatic Cell Correspondence Analysis using Iterative Point Cloud Registration S. Chen^{1,*}, S. Gehrer^{2,*}, S. Kaliman², N. Ravikumar¹, A. Becit¹, M. Aliee², D. Dudziak³, R. Merkel⁴, AS. Smith^{2,5}, and A. Maier¹

1.Pattern Recognition Lab, FAU Erlangen-Nürnberg, 2.PULS Group, Theo. Physics I, FAU Erlangen-Nürnberg, 3.Department of Dermatology, University Hospital Erlangen,

4.ICS 7: Biomechanics, Forschungszentrum Jülich GmbH, 5.Division of Physical Chemestry, Institute Ruđer Bošković, Croatia,

*Both contributed equally.

Introduction

In the field of biophysics, it is important to understand the response of tissue to a mechanism on the cellular level. However, automated cell correspondence analysis before and after deformation is an ongoing obstacle on the cellular level. We propose a novel approach to find the cellular correspondences.

Results and Discussion

- 3 data sets with different sizes and deformation scales
- Compared with the coherent point drift (CPD) [3]

Aim:

Cellular correspondence analysis based on:

- (1) Watershed based segmentation
- (2) Iterative point cloud registration (IPCR)

Material and Methods

Workflow:

#1	160/156	30%	142	142	137	0.91	0.88	142	142	140	0.91	0.90
#2	170/158	20.3%	136	136	52	0.86	0.33	146	146	145	0.92	0.92
#3	1264/900	20.3%	794	301	69	0.88	0.20	796	289	267	0.88	0.82

- N_{II}, N_{S} : cells of the unstretched (U) and stretched (S) images
- N_0 : obtained pairs
- N_{eval} : expert evaluated pairs
- $-N_{c}$: correctly identified pairs
- Found (F.): $found = \frac{N_{obtained pairs}}{N_{max.possible pairs}} = \frac{N_{O}}{\min(N_{U}, N_{S})}$ – Accuracy (Acc.): $Acc. = found \times \frac{N_{correct \ pairs}}{N_{evaluated \ pairs}} = found \times \frac{N_{C}}{N_{eval.}}$
- Example of obtained pairs on the ground truth

e. Initial Position

d. Original Position

Iterative point cloud registration:

f. Final Position

Unstretched

Stretched

1. 2D point clouds $A = \{a_1, ..., a_M\}, B = \{b_1, ..., b_N\}$, initial position T_0

- Calculate initial point matching A_c^0 and B_c^0 using T_0 based on k-d 2. tree nearest neighbor search [2], $A_c \subseteq A, B_c \subseteq B$
- 3. Calculate *T* to achieve the optimal alignment of the two reciprocal point clouds A_c and B_c
- Update point matching A_c and B_c using the new T 4.

Conclusion

Contribution:

 A novel approach to identify the cellular correspondences using point cloud registration

Reliability:

- Obtained more pairs and higher accuracy than CPD
- Robust for datasets with different sizes and deformation scales

Expandability:

- The provided baseline can be further improved with other
- 5. Repeat Step 3 and Step 4 until the termination criterion

$$f = \frac{M \cdot N}{K^3} \sum_{k=1}^K \|T \cdot a_{c,k} - b_{c,k}\|$$

is fulfilled

K: amount of the reciprocal pairs, $K \leq M$ and $K \leq N$

termination criterions or automatic initialization methods

References

[1] Meyer F. Signal Processing. 1994 [2] Muja M et al. VISAPP. 2009 [3] Myronenko A et al. IEEE TPAM. 2010

Contact

Shuging Chen Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany

shuqing.chen@fau.de +49 9131 85 25 24 6

Acknowledgements

European Research Council: ERC StG 2013-337283, MEMBRANESACT

German Research Foundation: RTG 1962

Emerging Field Initiative of FAU: Big-Thera

