A Divide-and-Conquer Approach Towards Understanding Deep Networks
Weilin Fu, Katharina Breininger, Roman Schaffert, Nishant Ravikumar, and Andreas Maier
1Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
2Erlangen Graduate School in Advanced Optical Technologies (SAOT), 91058 Erlangen, Germany

Motivation
- Aim to improve the interpretation of Artificial Neural Networks (ANN).
- Construct an explainable network pipeline with high performance according to the known operator theory [1, 2].
- Experiment design follows the divide-and-conquer approach using the U-Net [3] as a universal operator.

Quantitative Results
- Frangi-Net (FN) boosts from the original Frangi filter.
- The universal operator, i.e. the U-Net, improves the pipeline performance when used for preprocessing (UP).
- Using the Guided Filter Net (GF) for preprocessing maintains the performance enhancement.

Segmentation Network: Frangi-Net
- An trainable ANN counterpart of the Frangi vesselness filter [4].
- A Frangi-Net across 8 scales contains 6,525 parameters.

Qualitative Results
- UP performs as a edge-preserving denoising filter.
- Increasing the regularizer enforces the output of the preprocessing network to resemble the input.
- GF behaves as a band-pass filter rather than a denoising filter.
- The probability maps of pipelines with preprocessing networks are comparably good, and are superior to that without.

Universal Operator: U-Net
- Add BN Layers, replace DeConv with Upsampling and Conv Layers.
- U-Net with 3 levels and 16 initial filters contains 111,536 parameters.

Preprocessing Network: Guided Filter Net
- Use Context Aggregation Network to generate the guidance map f.
- The overall architecture contains 3,050 parameters.

Conclusion
- Using a universal operator as a tool to locate the bottleneck of a network pipeline is feasible. This confirms the known operator theory.
- The different UP outputs with varied regularizers give an example of the dilemma between ANN interpretability and performance.
- A network pipeline with well-interpretable component blocks as well as high performance is constructed.

References

Acknowledgements
The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC grant no. 810316).

Contact
Weilin Fu
Pattern Recognition Lab
Friedrich-Alexander University Erlangen-Nürnberg
Erlangen, Germany
+49 9131 85 25246
weilin.fu@fau.de