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e Aim to improve the interpretation of Artificial Neural Networks (ANN). e Frangi-Net (FN) boosts from the original Frangi filter.

e Construct an explainable network pipeline with high performance e The universal operator, i.e. the U-Net, improves the pipeline
according to the known operator theory [1, 2]. performance when used for preprocessing (UP).

e Experiment design follows the divide-and-conquer approach using the e Using the Guided Filter Net (GF) for preprocessing maintains the
U-Net [3] as a universal operator. performance enhancement.
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Fig 5: AUC score of various pipelines.

Segmentation Network: Frangi-Net

 An trainable ANN counterpart of the Frangi vesselness filter [4]. Qualitative Results

e A Frangi-Net across 8 scales contains 6, 525 parameters.

Input

e UP performs as a edge-preserving denoising filter.

| | e Increasing the regularizer enforces the output of the preprocessing
e scale o = 4.0 network to resemble the input.

Convolution layers

fiter 1: 2 ‘— fiter 3: 22 e GF behaves as a band-pass filter rather than a denoising filter.
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Concatenate single vesselness maps into one feature map, max-pooling across channels
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Fig 2: Frangi-Net architecture.

Universal Operator: U-Net
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Fig 6: Input (upper row) and output (lower row) to the segmentation network.
Pipelines from left to right: FN, UP+FN, UP+FN+reg, and GF+FN.
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Fig 3: U-Net architecture. Conclusion

e Add BN Layers, replace DeConv with Upsampling and Conv Layers.

e U-Net with 3 levels and 16 initial filters contains 111, 536 parameters. e Using a universal operator as a tool to locate the bottleneck of a
network pipeline is feasible. This confirms the known operator theory.
Preprocessing Network: Guided Filter Net o The different UP outputs with varied regularizers give an example of
the dilemma between ANN interpretability and performance.
W i e A network pipeline with well-interpretable component blocks as well
& o as high performance is constructed.
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e Use Context Aggregation Network to generate the guidance map /. 4] A.F. Frangi et al., “Multiscale Vessel Enhancement Filtering,” in MICCAI, 1998.

e The overall architecture contains 3, 050 parameters.



