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Abstract. Deep neural networks have achieved tremendous success in
various fields including medical image segmentation. However, they have
long been criticized for being a black-box, in that interpretation, under-
standing and correcting architectures is difficult as there is no general
theory for deep neural network design. Previously, precision learning was
proposed to fuse deep architectures and traditional approaches. Deep net-
works constructed in this way benefit from the original known operator,
have fewer parameters, and improved interpretability. However, they do
not yield state-of-the-art performance in all applications. In this paper,
we propose to analyze deep networks using known operators, by adopt-
ing a divide-and-conquer strategy to replace network components, whilst
retaining networks performance. The task of retinal vessel segmentation
is investigated for this purpose. We start with a high-performance U-
Net and show by step-by-step conversion that we are able to divide the
network into modules of known operators. The results indicate that a
combination of a trainable guided filter and a trainable version of the
Frangi filter yields a performance at the level of U-Net (AUC 0.974 vs.
0.972) with a tremendous reduction in parameters (111, 536 vs. 9, 575).
In addition, the trained layers can be mapped back into their original
algorithmic interpretation and analyzed using standard tools of signal
processing.
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1 Introduction

Deep learning (DL) technology [6] has been successfully applied in various fields
including medical image segmentation, which provides substantial support for
diagnosis, therapy planning and treatment procedures. Despite their outstanding
achievements, DL-based algorithms have long been criticized for being a black-
box and many design choices in Convolutional Neural Network (CNN) topologies
are driven rather by experimental improvements than theoretical foundation. Ac-
cordingly, understanding the actual working principle of the architectures is dif-
ficult. One option to gain interpretability is to constrain the network with known
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operators. Precision learning [8,9], which integrates known operators [3,13] into
DL models, can provide a suitable mechanism to design CNN architectures.
This strategy integrates prior knowledge into the deep learning pipeline, thereby
improving interpretability, providing guarantees and quality control in certain
settings. However, the quantitative performance of these approaches often falls
short compared to completely data-driven approaches.

In this work, we propose an approach to debug and identify the limita-
tion/bottleneck of a known operator workflow. Frangi-Net [3], which is the deep
learning counterpart of the Frangi filter [2] is utilized as an exemplary network.
The performance of different methods is evaluated on the retinal vessel segmen-
tation task, using data from the Digital Retinal Images for Vessel Extraction
(DRIVE) database [11]. Experiments are designed under the assumption that if
the replacement of one step leads to a performance boost, then this step is the
probable bottleneck of the overall workflow. In our case, we debug the Frangi-
Net by replacing the preprocessing step with the powerful U-Net [10]. With the
output from the U-Net as input, Frangi-Net approaches state-of-the-art perfor-
mance. Thereby, we conclude that the preprocessing method is the weakness
of the Frangi-Net segmentation pipeline. In other words, given a proper prepro-
cessing algorithm, Frangi-Net may be capable of accomplishing the retinal vessel
segmentation task. To verify this hypothesis, we further utilize the guided filter
layer [12], which is a deep learning module designed for image quality enhance-
ment. Experimental results confirm our hypothesis: the additional guided filter
layer indeed brings about a substantial improvement in performance. Due to
the modular design, analysis of the trained filter block is possible which reveals
slightly unexpected behaviour. Our work has two main contributions: Firstly, we
propose a feasible way to identify the bottleneck of a precision learning-based
workflow. Secondly, the debugging procedure yields a network pipeline with well-
defined explainable steps for retinal vessel segmentation, i. e. , guided filter layer
for preprocessing, and Frangi-Net for vesselness computation.

2 Methods

2.1 Frangi-Net

In this work, Frangi-Net, which is the deep learning counterpart of the Frangi
filter [2], is utilized as the segmentation network in different pipelines. The Frangi
filter is a widely used multi-scale tube segmentation method, which calculates
vesselness response V0 of dark tubes at scale σ with Hessian eigenvalues (|λ1| ≤
|λ2|) using:

V0(σ) =

{
0, if λ2 < 0,

exp(−R2
B

2β2 )(1− exp(− S2

2c2 )), otherwise,
(1)

where S =
√
λ21 + λ22 is the second-order structureness, RB = ‖λ1‖

‖λ2‖ is the

blobness measure, and β, c are image-dependent parameters for blobness and
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Fig. 1: Architecture of the 8-scale Frangi-Net.

structureness terms. Frangi-Net is constructed by representing each step in the
multi-scale Frangi filter as a layer. Here, we employ a Frangi-Net with 8 different
Gaussian scales ranging from 0.5 to 4.0. The convolution kernels are initialized
as the second-order partial derivatives of the Gaussian kernel at the correspond-
ing scales. We employ two additional 1 × 1 convolution layers before the final
softmax output layer, to regulate the data range. The hyper-parameters β, c in
Eq. 1 of all scales are initialized to 0.5 and 1.0, respectively. The network has
6, 525 weights, and the overall architecture is shown in Fig. 1.

2.2 U-Net

In this work, a U-Net [10] is directly applied to retinal vessel segmentation, and
forms the baseline method for all comparisons. U-Net is a successful encoder-
decoder CNN architecture, popularized in the field of medical image segmen-
tation. It combines location information in the contracting encoder path, with
contextual information in the expanding decoder path via skip connections. Here,
we adapt a three-level U-Net with 16 initial features with two main modifica-
tions. Firstly, batch normalization layers are added after convolution layers to
stabilize the training process. Secondly, deconvolution layers are replaced with
upsampling layers followed by a 1×1 convolution layer. The overall architecture
contains 111, 536 trainable weights.

2.3 U-Net + Frangi-Net

In order to analyze the reason for the performance differences between Frangi-
Net and the U-Net, we propose to employ the latter as a “wildcard preprocessing
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Fig. 2: U-Net architecture adapted for preprocessing.

network”. To this end, we concatenate the two networks such that the output of
the U-Net serves as input for the Frangi-Net and train the segmentation pipeline
end-to-end. The intuition here is that, if the combined network is able to achieve
a performance on par with the completely data driven approach, the bottleneck
of the known-operator network lies in the preprocessing. Otherwise, the known
operator is inadequate to solve the task at hand, even with optimized images.
Since Frangi-Net only takes single channel input, two additional modifications
are made to the final layers of U-Net: the final convolution layer yields a one
channel output, and a sigmoid layer is employed to replace the softmax layer for
feature map activation. The modified U-Net architecture is shown in Fig. 2.

2.4 Guided Filter Layer + Frangi-Net

Preliminary experiments conducted using U-Net and U-Net + Frangi-Net indi-
cated that the preprocessing step was indeed the bottleneck in the vessel seg-
mentation pipeline. Consequently, we propose to replace the “wildcard” U-Net
with a guided filter layer. The guided filter layer was proposed as differentiable
neural network counterpart of the guided filter [4], which can be utilized as an
edge-preserving, denoising approach. The guided filter takes one image p and
one guidance image I as input to produce one output image q. This translation-
variant filtering process can be simplified and described in Eq. 2:

qi =
∑
j

Wij(I)pj , (2)

where i, j are pixel indices, and Wij is the kernel which is a function of the
guidance image I and is independent of p.

A guided filter layer with two trainable components is used as the preprocess-
ing block. First, the guidance map I is generated with a CNN, using image p as
input. Here, the CNN is configured as a five-layer Context Aggregation Network
(CAN) [1]. Subsequently, a small feature extractor is applied to image p before
being passed to the guided filter layer. This feature extractor is composed of two
3 × 3 convolution layers with five intermediate channels, and one final output
feature map. The guided filter block contains 3, 050 parameters. The architecture
is shown in Fig. 3.
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Fig. 3: Architecture of guided filter layer adapted for preprocessing.

3 Experiments and Results

3.1 Data

The DRIVE database is employed to evaluate different pipelines in this study.
The database contains 40 RGB fundus photographs of size 565×584 pixels, which
are evenly divided into a training and a testing set. A validation set of four im-
ages is further separated from the training set to monitor the training process
and avoid overfitting. The green channels, which have the best contrast between
vessels and the background, are extracted and processed using Contrast Limited
Adaptive Histogram Equalization (CLAHE) [14] to balance inhomogeneous illu-
minations. Manual labels and Field Of View (FOV) masks are provided for all
images. For each image of the training set, a weighting map w which emphasizes
thin vessels is generated on the basis of the manual label using the equation
w = 1

α×d , where d denotes the vessel diameter in the ground truth, and α is a
factor manually set to 0.18. In order to have a meaningful and fair comparison
between different methods, all FOV masks are eroded inward by four pixels to
remove potential border effects. Performance evaluation is conducted inside the
FOV masks.

3.2 Network Training

The objective functions for all learning-based methods in this work are con-
structed with three parts as: Ltotal = w · Lfocal + λw ·Rw + λs ·Rs, where w is
the weighting map which emphasizes small vessels; Lfocal is the class balanced
focal loss [7], with a focusing factor of 2.0; Rw denotes an `2-norm regularizer on
the network weights to prevent overfitting; Rs represents a similarity regularizer
which is the mean squared error between the input and output of the preprocess-
ing net. λw, λs are the scaling factors of the corresponding regularizers, and are
set to 0.2 and 0.1, respectively. The Adam optimizer [5] with learning rate decay
is utilized to minimize the objective function. The initial learning rate is 5×10−4

for U-Net, and 5× 10−5 for all other pipelines. All networks are trained with a
batch size of 50, and with 168× 168 image patches. Data augmentation in form
of rotation, shearing, additive Gaussian noise, and intensity shifting is employed.
All methods are implemented in Python 3.5.2 using TensorFlow 1.10.0.
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Table 1: Performance evaluation on DRIVE testing set. prep., reg., seg. denote
preprocessing net, regularizer, and segmentation method, respectively.

prep. reg. seg. specificity sensitivity F1 score accuracy AUC

- - FF .9616±.0150 .7528±.0612 .7477±.0323 .9341±.0089 .9401

- - FN .9633±.0125 .8008±.0590 .7812±.0256 .9419±.0070 .9610

- Rw UN .9756±.0057 .7942±.0576 .8097±.0227 .9516±.0056 .9743

UP Rw FN .9726±.0082 .8070±.0565 .8088±.0236 .9506±.0054 .9743

UP Rw, Rs FN .9753±.0057 .7715±.0598 .7949±.0248 .9485±.0060 .9703

GF - FN .9729±.0060 .7982±.0546 .8048±.0191 .9498±.0048 .9719

3.3 Evaluation and Results

The evaluation performance of six different segmentation workflows is evaluated
on the DRIVE testing set, and is summarized in Table 1. Binarization of the
output probability maps from the network pipelines is performed with a single
threshold which maximizes the F1 score on the validation set. The input, in-
termediate outputs of the preprocessing nets and the corresponding probability
map results from the Frangi-Net for an representative region of interest (ROI)
of an image from the testing set are presented in Fig. 4.

From Table 1, we observe that the Frangi-Net without additional preprocess-
ing (FN) performs better than the original Frangi filter (FF), but worse than
the completely data-driven U-Net (UN). Using the U-Net as a preprocessing
network (UP + FN), we observe a performance boost, achieving results on-par
with UN, with respect to all evaluation metrics and reaching an AUC score of
0.975. With an additional regularizer Rs that enforces the similarity between the
input and output of the preprocessing network, the performance is only mod-
estly impaired. When looking at the intermediate outputs of the preprocessing
nets (see Fig. 4 (b) and (c)), we observe that the UP substantially enhances the
contrast for small vessels and reduces noise compared to the input image (a).
Low frequency information, e. g., the illumination in the bright optic disc and the
dark macula region, is removed when no additional Rs is applied. This provides
further confirmation of the hypothesis that the main bottleneck of the proposed
known-operator pipeline lies in the preprocessing, and can be combated by an
appropriate adaption of this step. This is supported by the results achieved using
the guided filter layer for preprocessing (GF + FN).

The guided filter layer, however, does not simply learn an edge-preserving
denoising filtering as the intermediate output reveals (see Fig. 4 (d)). It performs
a substantial enhancement of small vessels and removal of the low-frequency
background comparable to UP (see Fig. 4 (b)). In this case, the performance
of the pipeline is only marginally inferior to that of the U-Net, approaching an
AUC score of 0.972.
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(a) (b) (c) (d)

Fig. 4: The input (a) and output (b-d) of preprocessing networks for a repre-
sentative ROI are shown in the upper row, the corresponding probability map
results after Frangi-Net are presented in the lower row for: (a) no preprocessing
network, (b) UP, (c) UP with Rs, (d) GF.

4 Discussion and Conclusion

We proposed a method to analyze and interpret a DL-based algorithm, via step-
by-step conversion of a fully-data driven approach, to construct a pipeline using
well-defined known operators. The approach helps to identify and combat bottle-
necks in a known-operator pipeline, by localizing the components responsible for
drops in performance. Additionally, it provides a mechanism to interpret deep
network architectures in a divide-and-conquer pattern, by replacing each step in
the network pipeline with a well-defined operator.

The potential of the proposed framework to improve our understanding of
deep neural networks and enable intelligent network design was demonstrated
for the exemplary task of retinal vessel segmentation. The previously proposed
known-operator network Frangi-Net enables easy interpretation, but performs
worse than a fully data-driven approach such as the U-Net. Conversely, an inter-
pretation of the fully data-driven approach remains vague despite satisfactory
performance. By using the U-Net as a debugging tool, we confirm that with
appropriate preprocessing, the Frangi-Net is capable of achieving on-par per-
formance. This performance boost also indicates that the preprocessing is the
bottleneck of the Frangi-Net workflow. Subsequently, we identify the guided fil-
ter layer as a suitable known operator that can serve as a replacement for the
U-Net in terms of preprocessing, while retaining performance.

The quantitative results support our hypothesis that the task of vessel seg-
mentation can be separated into two steps: a preprocessing step that enhances
image quality, and a segmentation step which yields the actual vesselness proba-
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bility map. By replacing these elements step-by-step, we are able to preserve high
segmentation performance while incorporating interpretability into the network
pipeline with well-defined, understandable steps.

While the results of the U-Net preprocessing with similarity regularization
demonstrate that there exists an edge-preserving filtering approach that re-
sults in an equally effective segmentation based on the vesselness filter, the
guided filter layer does not fulfill the expected filtering behavior. Instead of
edge-preserving filtering, the guided filter layer learns a domain transfer to a
vessel-enhancing representation that removes low frequency information at the
same time. Looking at Eq. 2 this seems surprising, as the guided filter uses the
guidance image only for design of the filter kernel in a shift-variant filtering pro-
cess. Yet, this design does not guarantee an edge-preserving filtering per se as
the guidance image may also result in band-pass kernels. As a result, the filter
learns to create kernels that are optimal with respect to the purpose of the net
that is a vessel enhanced image in our case.

Still, our divide-and-conquer approach allows to specify the important parts
of a network. This is achieved by showing that a known operator network which
is restricted in what it can learn with 9, 575 vs. 111, 536 parameters, performs
comparably to a completely data-driven network with an AUC score of 0.972
vs. 0.974. The use of a powerful network, i. e., U-Net in this case, supplements
the performance and addresses the shortcomings of the known operators, and
thus helps to improve understanding of the network for a specific task. Future
work will look into exploiting the divide-and-conquer approach to aid network
interpretation and performance improvement for other tasks, based on known
operator modules. It provides a systematic framework to design interpretable
network pipelines with minimal loss in performance, relative to completely data-
driven approaches, which is compelling for the intelligent design of networks in
the future.
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