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Abstract. Driving a respiratory motion model in X-ray guided radio-
therapy can be challenging in treatments with continuous rotation such
as VMAT, as data-driven respiratory signal extraction suffers from angu-
lar effects overlapping with respiratory changes in the projection images.
Compared to a linear model trained on static acquisition angles, the bi-
linear model gains flexibility in terms of handling multiple viewpoints at
the cost of accuracy. In this paper, we evaluate both models in the con-
text of serving as the surrogate input to a motion model. Evaluation is
performed on the 20 patient 4D CTs in a leave-one-phase-out approach
yielding a median accuracy drop of only 0.14 mm in the 3D error of
estimated vector fields of the bilinear model compared to the linear one.

1 Introduction

In intensity modulated radiotherapy (IMRT) the radiation beams are shaped to
closely envelope the tumor region. With the linear accelerator (LINAC) rotating
around the patient, a therapeutic dose is accumulated within the malignent
cells while healthy tissue is spared. Treatment is either performed from pre-
defined angles (Step&Shoot) or in a continuous rotation (VMAT). Requiring a
complex dose optimization planned on pre-treatment (4D) CT, intra-fractional
respiratory motion can hinder accurate dose delivery. To compensate, a gimbaled
beam following the tumor motion [1] coupled with respiratory motion models [2]
have found success in image-guided radiotherapy (IGRT).

A motion model comprises a motion representation trained from 4D CT,
e.g. via principal component analysis (PCA). Correspondence is established
to a highly-correlated surrogate available in the treatment room, from which
the internal motion is inferred. Among surrogate sources, many LINACs come
equipped with an on-board imager to provide kV fluoroscopy. In this context, X-
ray guided RT shares similarities with cone-beam CT reconstruction where res-
piratory signal extraction from X-ray projections is prominent. Most data-driven
approaches [3] provide only a 1D signal insufficient for a low reconstruction er-
ror of the PCA-based motion representation [2]. While unsupervised learning on
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X-ray fluoroscopy [4] yields multiple respiratory features, they are restricted to
static acquisition and only applicable to Step&Shoot but not to continuously
rotating VMAT. Recently, Geimer et al. [5] presented a bilinear decoupling of
angular and respiratory variation in rotational X-ray scans. Based on digitally
reconstructed radiographs (DRRs), a rotational and respiratory feature repre-
sentation is learned. While it was shown that the decoupled respiratory features
can drive a respiratory motion model, no quantitative evaluation was performed
against comparable PCA-based models. With the bilinear model being an exten-
sion to the static case, this paper aims to provide insight into how much accuracy
is potentially sacrificed to gain independence from the trajectory angle.

In the following, we provide a brief overview of the structure of motion models
and illustrate how both the linear (Sec. 2.1) and bilinear model (Sec. 2.2) serve as
surrogate input. Sec. 2.3 explains the performance comparison between static and
bilinear surrogate as the main contribution of this paper. Results are presented
in Sec. 3 and wrapped up with a concise discussion and conclusion in Sec. 4.

2 Material & Methods

2.1 Respiratory Motion Models

McClelland et al. [2] identify four components, (1) the representation of the mo-
tion to be described, (2) the choice of surrogate signal and processing thereof,
(3) a correlation model linking surrogate to motion, and (4) a fitting method to
determine model parameters from training data. In the following, we will give a
possible choice of these components for X-ray guided RT and demonstrate how
the bilinear fluoroscopic model can slot in as the surrogate component.

Motion Representation. Given F binned volumes vj ∈ RN3

, j ∈ {1, . . . , F}
in a 4D CT, B-spline based deformable image registration (DIR) over the entire
lung w.r.t. the end-exhale phase (0In) yields displacement vector fields (VF)

dj ∈ R3N3

(see Fig. 1), where N is the arbitrary dimension of the volume. In
order to suppress noise and prevent overfitting, PCA is often applied resulting

in a low-dimensional representation {Θ̃, d̄}, where Θ̃ =
(
θ̃1, . . . , θ̃f

)
∈ R3N3×f ,

f � F , are the first f eigenvectors and d̄ is the mean VF. As a result, every dj
can be expressed as a linear combination by the respiratory PC scores ãj ∈ Rf

up to a residual error ε ∈ RN3

dj = Θ̃ ãj + d̄+ ε. (1)

Static X-ray Surrogate. An X-ray projection pi,j ∈ RN2

of volume vj under

the acquisition angle φi is given by the X-ray transform Ri ∈ RN2×N3

, such that
pi,j = Ri vj , where N again denotes arbitrary dimension of projection images
and/or volume. An analogous decomposition to Eqn. 1 for the volume vj yields

pi,j = Ri (Θaj + v̄) = ΘR
i aj + p̄i. (2)
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Fig. 1. Illustration of the bilinear decoupling idea. Respiratory changes are inherently
3-dimensional, but can only be observed in 2D when projected according to the X-ray
transform, where they overlap with angular changes due to rotation.

Here, ΘR
i ∈ RN2×f describes respiration-induced variation observable in the 2D

projections under the specific angle φi. Consequently, such a PCA decomposition
can be trained on the 4D CT forward projected under said acquisition angle.

Correlation Model. A popular model in literature for the correlation between
internal and surrogate scores Ã,A ∈ RF×f is multi-linear regression (MLR) [6]

W = argmin
Ŵ

(
1

2
||ŴA− Ã||22 + α

1

2
||Ŵ ||22

)
, (3)

with the Moore-Penrose pseudoinverse as the closed-form solution.

2.2 Bilinear Model for Rotational X-ray

A static angle model as described in Sec. 2.1 is unable to explain variation caused
by rotation. As an extension to the linear case, a bilinear model can decouple
angular and respiratory variation into distinct feature spaces [5], such that a
projection pi,j at angle φi and respiratory phase tj can be written as

pi,j =M×1 aj ×2 bi, (4)

where aj ∈ Rf , bi ∈ Rg are respiratory and rotational feature weights, andM∈
RN2×f×g is a model tensor trained from DRRs of a prior 4D CT. ×k denotes
the kth mode product [7]. Bilinear training and application will be outlined in
the following. For a detailed derivation we refer the reader to [5].

Model Training. Simulating a circular scan that mimics the VMAT arc the F
volumes vj are projected at G angles φi, i ∈ {1, . . . , G}. Higher-order SVD [7] is

applied to the data tensor P ∈ RN2×F×G such that P =M×1 A×2 B, where
A ∈ RF×f and B ∈ RG×g contain the model weights of the training set.
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(a) Vero LINAC
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(b) Experimental Setup

Fig. 2. (a) Vero with kV imager mounted on the same ring gantry, offset by 45◦ to
the MV treatment beam. (b) Bilinear training at every 6◦ (blue) with test angles (red)
every 38.7◦ starting at 3◦, resulting in varying distances to neighboring training angles.

Weight Estimation. Both rotational and respiratory bilinear weights need to
be determined for a new projection image p(t, φ) at unknown respiratory state
t. While the acquisition angle is known, the corresponding rotational weights
b(φ) are not. However, given similarity between neighboring views, we adopt
the B-spline interpolation of [5] interpolate b(φ) from the training weights B.
Mode-multiplying b (φ) into M removes the angular variation and yields

MR
φ =M×2 b (φ) ∈ RN

2×f×1 → MR
φ ∈ RN

2×f (5)

an angle-dependent model matrix such that p(φ, t) = MR
φ at as in Eqn. 2.

2.3 Performance Comparison

Data. We evaluate the performance of the linear and bilinear surrogate model
on the 4D CTs of 20 patients being treated for lung carcinoma or metastasis at
the University Hospital Erlangen. Each 4D CT consists of F = 8 volumes re-
constructed at respiratory states 0 %, 15 %, 50 %, 85 %, 100 % inhale, and 85 %,
50 %, 15 % exhale. DIR of these volumes provided the VF for training the patient-
specific PCA-based internal motion representation as described in Sec. 2.1. For
training the bilinear surrogate model, each phase was forward projected along
a circular trajectory according to the Vero SBRT (Brainlab AG, Munich, Ger-
many) geometry at G = 60 angles in steps of 6◦ from 0◦ to 354◦. For testing,
additional DRRs were created at ten angles φk every 38.7◦ starting at 3◦. The
interval was chosen to ensure varying distances to neighboring training angles.
Fig. 2 illustrates the choice of training and testing angles, including ◦-distances.

Experiments. A leave-one-phase-out evaluation was performed for each pa-
tient. For the motion representation (feature dimensionality f = 4) each respira-
tory phase was subsequently removed prior to PCA. The linear surrogate model
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(a) Individual angles. (b) Individual phases.

Fig. 3. Estimation error of the linear and bilinear model averaged for angles and phases.

with f = 4 was trained from the DRRs of each test angle directly minus the
left-out phase. In contrast, the bilinear model was trained on the G = 60 train-
ing angles without the left-out phase and g = 40 as rotational dimensionality
ensuring flexibility towards rotation. Here, f = 5 as the 1st bilinear compo-
nent is near constant and represents the shift towards the mean due to missing
mean normalization [5]. Finally, the regression matrices were computed between
internal scores and the two different surrogate features of the training set.

The projection pk,j for left-out phase tj and test angle φk is then fed to
both surrogate models, with the bilinear model also requiring the angle φk. The
extracted weights are regressed to an internal representation aj and the VF is
reconstructed according to Eqn. 1. Estimation accuracy is reported based on the
voxelwise euclidean error to the ground truth VF from DIR.

3 Results

Average accuracy over all 20 patients, 10 angles, and 8 phases was 1.13±0.58 mm
(median: 0.78 mm) for the static model and 1.27 ± 0.67 mm (median: 0.89 mm)
for the bilinear surrogate. Given 1600 observation per model, a Levene test was
performed on the mean errors indicating significance at a p-value of 1.2e−6. Fig.
3 shows the average error over all patients displayed for individual angles and
phases. Neither surrogate model is sensitive to the viewing angle. Estimation
error outliers increased with the inhale state, which seems reasonable given that
the 100In state corresponds to largest VF magnitude. As seen in Fig. 4 displaying
the mean error for individual patients average over all phases and angles, the
estimation error mostly relies on the actual patient and the quality of the prior
4D CT. Overall, the bilinear surrogate model was only 0.14 mm worse on average
than the linear model specifically trained for that particular test angle.

4 Discussion

The bilinear surrogate model performed only slightly worse than the one trained
on static acquisition angles. This is unsurprising, as the static model has seen
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Fig. 4. Average estimation error of the linear and bilinear model for individual patients.

the test angle except for the test phase while the bilinear one is flexible over the
entire trajectory. As such, the major gain in flexibility comes at the cost of only
a small drop in accuracy. Similar to [5], the leave-one-out evaluation suffers from
two shortcomings in assuming a perfect baseline registration between diagnostic
4D CT and the in-room patient, and no inter-fractional changes. However, the
linear model also benefits from this simplification and, thus, the comparison is
still valid. Relying on two distinct 4D CT per patient for training and testing
can help model these conditions.

In conclusion, we showed in a retrospective patient study that a bilinear
model operating on a circular X-ray sequence can be used to drive a respiratory
motion model during continuously rotating VMAT treatments.
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