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Abstract. Recently, Magnetic Resonance Fingerprinting (MRF) was
proposed as a quantitative imaging technique for the simultaneous acqui-
sition of tissue parameters such as relaxation times T1 and T2. Although
the acquisition is highly accelerated, the state-of-the-art reconstruction
suffers from long computation times: Template matching methods are
used to find the most similar signal to the measured one by compar-
ing it to pre-simulated signals of possible parameter combinations in a
discretized dictionary. Deep learning approaches can overcome this lim-
itation, by providing the direct mapping from the measured signal to
the underlying parameters by one forward pass through a network. In
this work, we propose a Recurrent Neural Network (RNN) architecture
in combination with a novel quantile layer. RNNs are well suited for
the processing of time-dependent signals and the quantile layer helps to
overcome the noisy outliers by considering the spatial neighbors of the
signal. We evaluate our approach using in-vivo data from multiple brain
slices and several volunteers, running various experiments. We show that
the RNN approach with small patches of complex-valued input signals
in combination with a quantile layer outperforms other architectures,
e.g. previously proposed Convolutional Neural Networks for the MRF
reconstruction reducing the error in T1 and T2 by more than 80%.
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1 Introduction

One disadvantage of the most currently used Magnetic Resonance Imaging
(MRI) techniques is the qualitative nature of the images, thus in most cases
no absolute values of the underlying physical tissue parameters, e.g. T1 and
T2 relaxations, are obtained. Magnetic Resonance Fingerprinting (MRF) was
recently proposed to overcome this limitation: It provides an accelerated acqui-
sition of time signals which differ with the various tissue types by using randomly
modified parameters during the acquisition (e.g. Flip Angle (FA) or Repetition
Time (TR)) and strong undersampling with spiral readouts. These signals are
compared to simulated signals of possible parameter combinations of T1 and
T2 and quantitative maps are reconstructed [7,8]. However, this state-of-the-
art approach suffers from high computational effort: Every measured signal is
compared to every simulated signal using template matching algorithms. Due
to storage and computational limitations, this dictionary can only have a finite
amount of possibilities and thus the maps are limited to these parameter com-
binations and can be erroneous [13]. The more combinations the dictionary con-
tains, the more expensive is the reconstruction in terms of time and storage. In
order to provide continuous predictions, to accelerate this process and to elim-
inate the burden of high storage requirements during the reconstruction, deep
learning (DL) can be used: Reconstruction is now performed by forward passing
the signal (or signals) through a (regression) network, which is able to predict
the T1 and T2 relaxation times for the input. Proposed approaches vary from
Fully Connected Neural Networks (FCNs) [1], Convolutional Neural Networks
(CNNs) [2,5,6] and other architectures, e.g. incorporating an U-Net [3]. How-
ever, also state-of-the-art DL solutions have their drawbacks: While FCNs are
known to tend to overfit because of the huge number of parameters, CNNs are
not optimally suited for time-resolved tasks. To overcome these limitations, we
propose Recurrent Neural Networks (RNNs) for this reconstruction task due to
their capabilities to capture the time dependency in the signal better than e.g.
CNNs. We evaluate our approach using in-vivo data from multiple brain slices
and several volunteers and investigate with an extensive evaluation following
aspects: (1) the superior performance of RNNs over CNNs, (2) complex-valued
input signal data instead of magnitude data as in some previous approaches
(e.g. [1,5]) and (3) spatially connected signal patches instead of one signal for
the input layer in combination with a novel quantile filtering layer prior to the
output layer. We expect small, spatially connected patches to have the same
type of tissue and therefore the same quantitative parameters. The knowledge
of spatial neighbors was shown to help the reconstruction accuracy by e.g. [3],
but they used the whole image as input. To be able to train their network, all
signals have to be compressed and possibly important information may be lost
in the signals. Our approach uses smaller, not compressed patches of spatially
connected signals (cf. Fig. 1). To the best of our knowledge, RNNs for MRF
were only investigated using signals from a synthetic dataset and without the
consideration of spatial neighbor signals [10].
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Fig. 1. Overview over the MRF reconstruction process using deep learning. We map the
reconstruction process using a Recurrent Neural Network with complex-valued input
signals in combination with a quantile layer. LSTM: Long Short-Term Memory layer,
FC: Fully Connected layer.

2 Methods

2.1 Recurrent Neural Networks

General Architectures: We devise a regression RNN to solve the MRF recon-
struction task: From the input (one or more time signals), the network predicts
the quantitative relaxation parameters for this signal. For the development of
the networks, we use the well-known Long Short-Term-Memory (LSTM) lay-
ers [4]. In order to keep the sequence in a moderate size, we reshaped the signals
of length n = 3, 000 data points into 30 even sized parts. Thus, every sequence
element consists of 100 complex-valued (flatterned to 200 values from the real
and imaginary parts, respectively) or magnitude data points and is used in front
of the LSTM layer as the first layer of our RNNs. This reshaping reduces the risk
of vanishing or exploding gradient problems during the training [11]. One LSTM
layer is followed by the Rectified Linear Unit (ReLU) activation and a batch
normalization (BN). Afterwards, we use 4 fully connected layers, each followed
by a ReLU activation and a BN layer (each operating on either the magnitude
or on the real and imaginery data points separately), to execute the regression.

Quantile Layer: To cope with signal outliers due to undersampling or noise dur-
ing the acquisition, we propose to combine the RNN architecture with a quantile
layer as the last layer prior to the output. Inspired by work from Schirrmacher
et al. in [12], we use small 3×3 patches of signals, which are locally connected for
the input layer. Thus, the input for one regression is increased by a factor of 9
compared to networks with one signal as input. For the output, we compute the
0.5 quantile of all predictions from this neighborhood. The quantile operation
q() can be reformulated as q(f) = Qf , where Q denotes a sparse matrix which
stores the position of the quantile. In the backward pass, the gradient w.r.t. the
input is simply the transposed matrix QT . We expect the signals from small
patches to belong to similar or same parameters as they originate from same or
similiar tissue type. The quantile layer enables a pooling operation that is more
robust to noise compared to common pooling operations such as maximum or
average pooling. To the best of our knowledge, we are the first to incorporate
this operation as a network layer.
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2.2 Training and Evaluation

All our models are trained based on the mean squared error (MSE) loss and
optimized using ADAM. We evaluate all models by measuring the difference
between the predicted and the ground-truth T1 and T2 relaxation times, com-
puted as the relative mean error and the appropriate standard deviation. Data
is split into disjunct training, validation and test sets. The validation set is used
to select the best model from all training epochs, the test set for testing a model
on unknown data afterwards.

3 Experiments and Results

3.1 Data Sets

Data Acquisition: All data sets for our experiments were measured as axial brain
slices in 8 volunteers (4 male, 4 female, 43 ± 15 years) on a MAGNETOM Skyra
3T MR scanner (Siemens Healthcare, Erlangen, Germany) using a prototype
sequence based on Fast Imaging with Steady State Precession with spiral read-
outs [7] and following sequence parameters: Field-of-View: 300 mm, resolution:
1.17 × 1.17 × 5.0 mm3, variable TR (12–15 ms), FA (5–74◦), number of repeti-
tions: 3,000, undersampling factor: 48. From 2 volunteers, 2 different slices were
available, from 6 volunteers, 4 slices were available each. All slices were measured
at different positions and points in time to reduce possible correlations between
slices from one volunteer.

Ground-Truth Data: In order to create accurate ground-truth data for our DL
experiments, we used a fine resolved dictionary containing overall 691,497 pos-
sible parameter combinations with T1 in the range of 10 to 4,500 ms and T2 of
2 to 3,000 ms, respectively. To be able to reconstruct the relaxation maps in
a reasonable time and to reduce the memory requirements, the dictionary and
measured signals were compressed to 50 main components in the time domain
using SVD prior to the template matching.

3.2 Experiments for Finding Architectural Settings

Experimental Setup: We ran three specific types of experiments to investigate
following issues:

1. Performance of networks using magnitude input signals Sm ∈ R vs. complex-
valued input signals Sc ∈ C. For this, we compared the CNN (architectural
details see Sect. 3.3) and RNN models with 1 × 1 Sm and Sc.

2. Performance of networks using CNN vs. RNN models (both with a comparable
number of learnable parameters). For this, we compared the CNN and RNN
models with 1 × 1 input signals Sc.

3. Performance of networks using 1 × 1 input signals Sc vs. 3 × 3 input signals
Sc in combination with a 0.5 quantile layer prior to the output. For this, we
compared RNN models with and without a quantile layer.
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Data Splitting: As only a limited amount of data sets (overall 12 slices from 4
volunteers) was available for our extensive experiments, we first used all slices
from these 4 volunteers randomly separated into training, validation and test
sets (8, 2 and 2 slices, respectively). We then used additional 16 slices from
another 4 volunteers (again randomly separated) for experiments with our best
fitted model (19 slices for training, 7 for validation, 2 for testing).

3.3 Comparison with Other DL Architecture

We used the CNN model with overall 4 convolutional and 4 fully connected layers
with ReLU activations and average pooling in [5] to compare our approach with
another DL based MRF reconstruction framework. We extended this baseline
model with BN layers after each convolutional and fully connected layer.

3.4 Results

Results can be found in Table 1 (validation loss from the best epoch) and in
Fig. 2 (parameter maps on the same test set from all models).

Table 1. Validation losses across different experiments. Best results are marked in
bold. The validation loss is measured as

√
MSE over T1 and T2 values. CNN1: CNN

model with 1 × 1 input signals, RNN1: RNN model with 1 × 1 input signals, RNN3:
RNN model with 3 × 3 signal patch as input and quantile layer, RNN∗

3: the same as
RNN3, trained with the larger data set. Detailed information about the models see
Sects. 2.1 and 3.3.

Validation loss [ms]

Input signals Model

CNN1 RNN1 RNN3 RNN∗
3

Sm ∈ R 636.96 424.96 – –

Sc ∈ C 470.26 269.20 221.52 195.34

4 Discussion

In summary, the main observation from our results is the clear improvement of
the performance using our proposed RNN model in combination with complex-
valued input signals and the quantile layer in comparison to all other tested
models.

Magnitude vs. Complex-Valued Signal Inputs: We first compare our models
trained with Sm and Sc inputs. The utilization of both components of the
complex-valued signals, instead of only computing the magnitudes for the input
layers of the networks, is an essential factor for the performance. A clear reduc-
tion of the errors is achieved using Sc for both approaches (CNN: more than
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CNN with 1× 1 Sm, RME± std.dev.[%]: T1 : 70.6± 122.4, T2 : 1069.1± 1363.2

CNN with 1× 1 Sc, RME± std.dev.[%]: T1 : 43.8± 81.4, T2 : 48.1± 112.8

RNN with 1× 1 Sm, RME± std.dev.[%]: T1 : 64.3± 108.7, T2 : 108.3± 156.9

RNN with 1× 1 Sc, RME± std.dev.[%]: T1 : 23.5± 50.7, T2 : 55.0± 217.8

RNN with 3× 3 Sc, RME± std.dev.[%]: T1 : 13.6± 25.3, T2 : 23.9± 66.8

RNN with 3× 3 Sc, RME± std.dev.[%]: T1 : 14.9± 27.2, T2 : 26.7± 94.9

Fig. 2. Predicted maps of one test data set from models using small data set (rows
1–5), or large data set (row 6). First column: T1 maps. Second column: T1 relative mean
errors to the ground-truth. Third column: T2 maps. Fourth column: T2 relative mean
errors to the ground-truth. For better visibility, all relative error maps were clipped at
100%, the background of all T1 and T2 maps was set to −200 and they were windowed
equally for fair comparison (0–4,000 ms and 0–600 ms, respectively). RME: Relative
mean error, std.dev.: standard deviation.
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62%, RNN: more than 50%). Comparing the visual results of e.g. the same RNN
model using Sm and Sc (cf. rows 3, 4 in Fig. 2), the complex version clearly yields
reduced relative mean errors and improved parameter maps without being cor-
rupted by the heavy ringing artifacts which appear with the Sm inputs.

CNN vs. RNN: A clear improvement is also achieved using a RNN instead of a
CNN model with a reduction of the errors up to 53%. Independent of the input
signal types, the CNN model is not able to reconstruct meaningful parameter
maps showing soft tissue contrast. In comparison, the RNN model is capable of
reconstructing high detail parameter maps, showing the better capability of the
RNN for processing time-dependent signals. Nevertheless, this holds only for the
RNN using Sc, since the RNN using Sm is still corrupted by the ringing artifacts.

Quantile Layer: Our results show additionally, that a quantile layer furthermore
improves the performance (cf. rows 4, 5 in Fig. 2), reducing the errors by 57% and
43% for T1 and T2, respectively, in comparison to a RNN without quantile layer.
The influence of the quantile layer is particularly evident at transitions between
different tissue types in the parameter map. With the help of the quantile layer,
the errors at the edges can be enormously reduced, as the 0.5 quantile layer acts
as an edge-preserving denoising filter (cf. the relative error maps in rows 4, 5 in
Fig. 2).

Challenges and Limitations: Our experiments show the improved performance
step-by-step, that increases from (1) magnitude to complex-valued input signals,
(2) from a CNN to a RNN model and (3) from a RNN without a quantile
layer to a RNN with a quantile layer. Even though we use a limited amount of
data, our results are a strong indication, that our model is able to generalize.
Using our best RNN model and training it with slightly more data already
decreased the error (cf. Table 1), which encourages this assumption. One further
step, however, is the evaluation of our proposed approach using data splits with
completely unseen volunteer data sets in the validation or test data when more
data is available (preliminary experiments in this direction are attached in the
Supplementary Material). Moreover, we used a very fine-resolved dictionary for
the ground-truth data. While this is crucial for accurate ground-truth data,
this further increases the amount of training data that is necessary to fully
imprint the complex mapping into the network. In comparison to other MRF
DL approaches (e.g. the MRF-EPI sequence in [1]), we used signals from a very
strongly undersampled acquisition (undersampling factor: 48), which leads to
very noisy and corrupted signals compared to simulated dictionary signals. As
shown by Hoppe et al. in [5,6], fully sampled dictionary signals can be easily
learned by simple CNN models. However, undersampled in-vivo data are more
challenging to reconstruct with the MRF DL method, thus a more complex
model is required.
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5 Conclusion

We proposed a regression RNN for MRF reconstruction. Our architecture com-
bines a model used to deal with time-dependent complex-valued input signals
incorporated as a LSTM layer with a novel quantile layer to deal with signal
outliers, which are very common due to the strong undersampling during the
acquisition. We evaluated our approach in a proof-of-concept study with vari-
ous experiments and showed, that our model outperforms other DL models like
CNNs or RNNs without the additional quantile layer, reducing the errors by
more than 80%. One limitation of our study is the restricted amount of train-
ing data, which will be addressed in future work. Furthermore, another future
step will be a deeper comparison of the different architectures and their features
which can help to improve the interpretability of the networks. In addition, the
incorporation of known operations based on the imaging physics within the net-
works as described in [9] can help to reduce the complexity and improve the
performance at the same time. This also will be investigated for our application.
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