

Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior

Yixing Huang, Alexander Preuhs, Günter Lauritsch, Michael Manhart, Xiaolin Huang, and Andreas Maier

erc

Outline

- Introduction
- Data Consistent Artifact Reduction (DCAR)
- Experimental Setup and Results
- Conclusion

Introduction

THE FRIDERICO
SIS HANIHON

Limited angle tomography

• Reconstruction from data acquired in an insufficient angular range

erc

Healthine

- C-arm systems: restriction from other system parts or external obstacles
- Artifacts occur due to missing data, typically in the form of streaks

Siemens Arts zee Multipurpose system

120° reconstruction

SIEMENS

Artifact reduction methods

- Extrapolation methods [1]: do not work for complex objects
- Iterative reconstruction with compressed sensing [2]: do not work for super short scans

erc

- Conventional machine learning [3]: may introduce new artifacts
- Deep learning [4-8]: state of the art, effective, but not robust

- 1. Y. Huang et al., "Restoration of missing data in limited angle tomography based on Helgason-Ludwig consistency conditions", *Biomed. Phys. & Eng. Express*, 2017
- 2. Y. Huang et al., "Scale-space anisotropic total variation for limited angle tomography", IEEE Trans. Radiat. Plasma Med. Sci., 2018
- 3. Y. Huang et al., "Traditional machine learning for limited angle tomography", Int. J. Comput. Assist. Radiol. Surg., 2019
- 4. T. Würfl et al., "Deep learning computed tomography", Proc. MICCAI, 2016
- 5. J. Gu and J. C. Ye, "Multi-scale wavelet domain residual learning for limited-angle CT reconstruction", Proc. Fully3D, 2017
- 6. Y. Huang et al., "Some investigations on robustness of deep learning in deep learning", Proc. MICCAI, 2018
- 7. T. Würfl et al., "Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems", *IEEE Trans. Med. Imaging*, 2018
- 8. T. A. Bubba et al., "Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography", *Inverse Probl.*, 2019

SIEME

Healthine

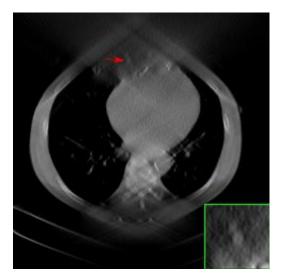
Robustness of deep learning

• Cannot reliably generalize to unseen data (insufficient training data)

erc

• Sensitive to noise or adversarial perturbations [1]





reference

FBP reconstruction

U-Net reconstruction

1. Y. Huang et al., "Some investigations on robustness of deep learning in deep learning", Proc. MICCAI, 2018

SIEMENS

Improve deep learning robustness

- Combine deep learning with conventional methods
 - a. Build neural networks from known operators [1-3]
 - b. Post-process deep learning reconstruction by conventional methods

erc

3. A. Kofler et al., "A U-Nets cascade for sparse view computed tomography", Proc. MICCAI MLMIR, 2018

^{1.} A. Maier et al., "Learning with known operators reduces maximum training error bounds", Nat. Mach. Intell., 2019

^{2.} T. Würfl et al., "Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems", *IEEE Trans. Med. Imaging*, 2018

Data Consistent Artifact Reduction (DCAR)

SIEME

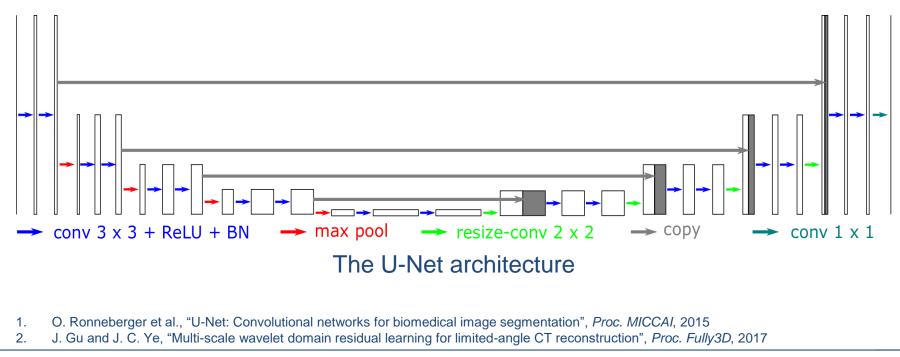
Healthinee

The U-Net

- The state-of-the-art U-Net [1,2] as post-processing for artifact reduction in image domain
- Image-to-image prediction has no direct connection to projection domain

erc

Incorrect structures occur



Data consistent artifact reduction (DCAR)

• Data fidelity of measured data

$$\|\boldsymbol{A}_m\boldsymbol{f} - \boldsymbol{p}_m\| < e_1$$

erc

SIEME

where p_m denotes the measured projection data, A_m denotes the corresponding system matrix, f is the image to reconstruct, and e_1 is a parameter for error tolerance.

• Data fidelity of unmeasured data

 $||A_u f - A_u f_{U-Net}|| = ||A_u (f - f_{U-Net})|| < e_2$

where p_u denotes the unmeasured projection data, A_u denotes the corresponding system matrix, f_{U-Net} is the U-Net reconstruction, and e_2 is another parameter for error tolerance.

• A_m and A_u form a short scan

Data consistent artifact reduction (DCAR)

erc

SIEMEN Healthinee

• Regularization by iterative reweighted total variation (wTV) [1] to further reduce artifacts due to the error tolerance of e_1 and e_2

$$\left\| \boldsymbol{f}^{(n)} \right\|_{\text{WTV}} = \sum_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}} \boldsymbol{w}_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}}^{(n)} \left\| \mathcal{D} \boldsymbol{f}_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}}^{(n)} \right\|$$
$$\boldsymbol{w}_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}}^{(n)} = \frac{1}{\left\| \mathcal{D} \boldsymbol{f}_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}}^{(n)} \right\| + \epsilon}$$

• Overall objective function for DCAR:

$$\min_{f} \|f^{(n)}\|_{WTV} \text{ subject to } \begin{cases} \|A_{m}f - p_{m}\| < e_{1} \\ \|A_{u}(f - f_{U-Net})\| < e_{2} \\ f^{(0)} = f_{U-Net} \end{cases}$$

1. Y. Huang et al., "Scale-space anisotropic total variation for limited angle tomography", IEEE Trans. Radiat. Plasma Med. Sci., 2018

FRIEDRICH-ALEXAN

NIVERSITÄT

Experimental Setup and Results

Experimental Setup

• 120° cone-beam limited angle tomography without and with Poisson

erc

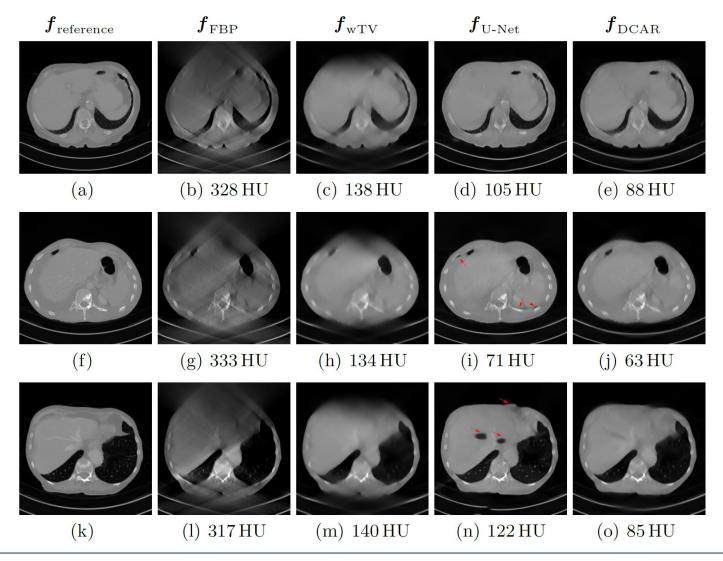
SIEMEN Healthinee

- 16 patients for training (25 slices from each patient) and 1 for test
- Reconstruction parameters:

 e_1 = 0.001 (0.01), e_2 = 0.5, ϵ = 5 HU, 100 iterations...

Parameter	Value
Scan angular range	$120^{\circ}(210^{\circ})$
Start angle	$30^{\circ}(0^{\circ})$
End Angle	$150^{\circ}(210^{\circ})$
Angular step	1°
Source-to-detector distance	$1200.0\mathrm{mm}$
Source-to-isocenter distance	$600.0\mathrm{mm}$
Detector size	620×480
Detector pixel size	$1.0\mathrm{mm} imes1.0\mathrm{mm}$
Image size	$256 \times 256 \times 256$
Image pixel size	$1.25\mathrm{mm} \times 1.25\mathrm{mm} \times 1.0\mathrm{mm}$

Noise-free case results



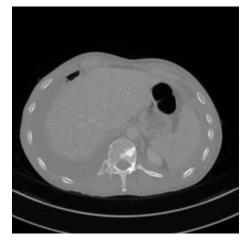
SIEMENS Healthineers

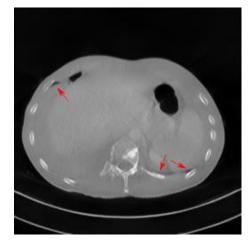
Noise-free case results

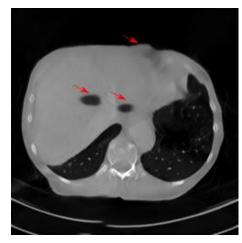
f_{reference}

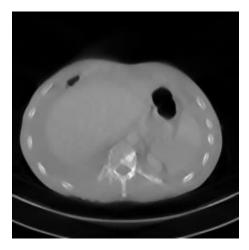
fU-Net

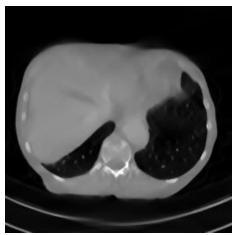
*f*_{DCAR}



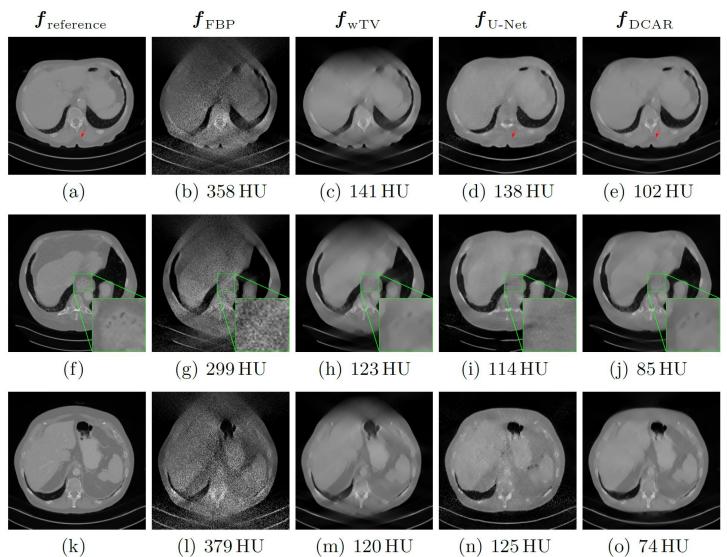




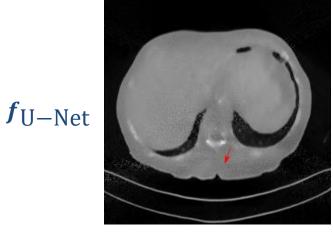


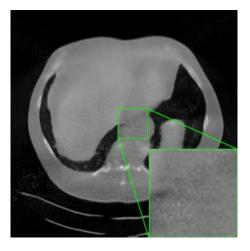


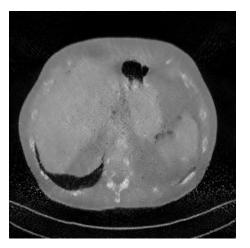
Noisy case results



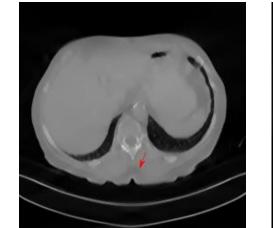
Noisy case results

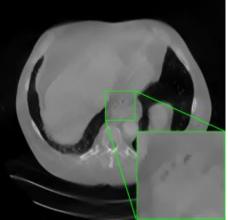


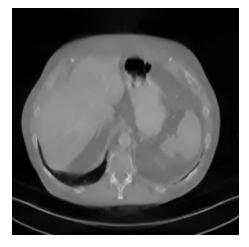




f_{DCAR}

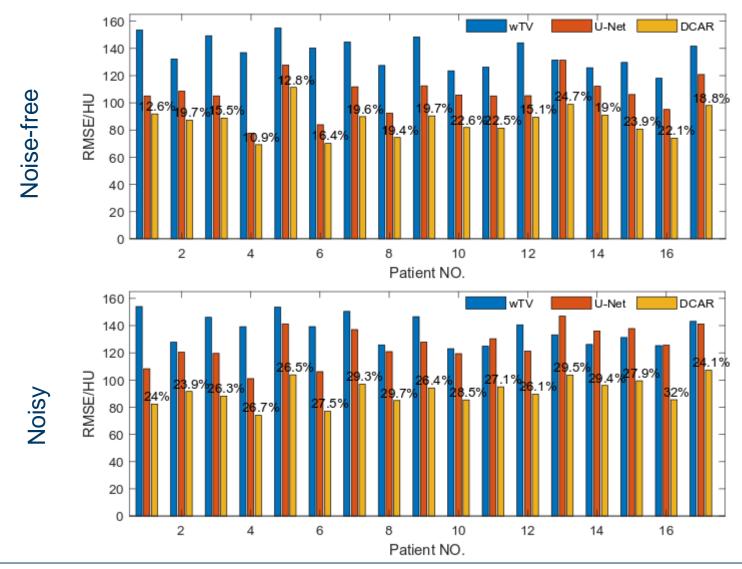






erc

Leave-one-out cross-validation



Conclusion

THE FRIDE
THE REAL STREET
AC THE THE THE
Z
SIS AVNING

SIEMENS

Healthinee

Conclusion

• DCAR utilizes deep learning reconstruction as prior for missing data

erc

- DCAR combines the benefits of wTV and the U-Net
- Tags: hybrid, deep learning prior, post-processing

Thank you!

yixing.yh.huang@fau.de