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Abstract
Optical coherence tomography angiog-

raphy (OCTA) is a relatively new

imaging modality that generates

microvasculature map. Meanwhile,

deep learning has been recently

attracting considerable attention in

image-to-image translation, such as

image denoising, super-resolution and

prediction. In this paper, we propose a deep learning based pipeline for OCTA.

This pipeline consists of three parts: training data preparation, model learning and

OCTA predicting using the trained model. To be mentioned, the datasets used in

this work were automatically generated by a conventional system setup without

any expert labeling. Promising results have been validated by in-vivo animal exper-

iments, which demonstrate that deep learning is able to outperform traditional

OCTA methods. The image quality is improved in not only higher signal-to-noise

ratio but also better vasculature connectivity by laser speckle eliminating, showing

potential in clinical use. Schematic description of the deep learning based optical

coherent tomography angiography pipeline.
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1 | INTRODUCTION

Over the past two decades, optical coherent tomography
(OCT) has become one of the most important imaging
modalities in healthcare, which is noninvasive and depth-
resolved [1–3]. OCT is able to generate in-vivo structural
images by detecting interference signal between the reflected
signal from reference mirror and the backscattering signals
from biological tissue [3, 4]. Nowadays, OCT is widely

applied to neurology, ophthalmology, dermatology, gastro-
enterology and cardiology by virtue of its excellent section-
ing ability [5–11]. In addition to structural imaging, OCT
has been explored and extended for functional imaging with
the rapid development of light source and detection tech-
niques, for instance, optical coherence tomography based
angiography (OCTA) [12–16].

Compared with traditional angiographic techniques (ie,
fluorescein), OCTA is no-injection and dye-free. A large
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number of algorithms have been investigated to contrast
blood vessels from static tissue by assessing the change in
OCT signal caused by red blood cells (RBCs). Essentially,
according to the information employed by the OCTA algo-
rithms, OCTA methods can be classified into three categories:
phase-signal-based OCTA techniques, intensity-signal-based
OCTA techniques and complex-signal-based OCTA tech-
niques [17, 18]. As of now, all of the methods are based
on measurement of OCT signal change between adjacent B-
scans at the same location. For a certain position, the flow
intensity is calculated from phase variance or intensity vari-
ance using different statistical methods. However, both of
them can only utilize partial information of OCT signal
change due to the limitations of analytical methods. Besides,
OCTA image contains a wealth of morphological informa-
tion, which has never been utilized in prior studies. Unlike
analytical methods [19–28], learning based solutions, such
as deep learning, are able to mine as much inner connection
hidden in OCT signal as possible, even the concealed mor-
phological information.

Dramatic improvements in parallel computing techniques
make it possible to process large amounts of data in deep
neural networks. Recent breakthroughs in deep learning are
mainly originated from deep convolutional neural networks
(CNNs) [29–33]. In medical imaging field, a large number
of deep learning models have been developed for image
enhancement and image reconstruction. Recently, Lee et al
[34] reported an attempt on generating retinal flow maps
from structural OCT with an U-shaped auto-encoder net-
work. Although they have employed large amount of clinical
data for model training, but the result is not quite satisfactory
and the deep learning model is unable to identify small size
vessels correctly. Structural information of small size vessels
is difficult to distinguish from OCT noise due to the strong
light scattering in tissue. Besides, the labeling quality in [34]
is limited to generate promising models. Note that, the image
quality of label for model training is crucial, which could
greatly influence the angiography ability of trained model.

In this work, we propose a novel deep learning based
pipeline as an alternative to conventional analytic OCTA
algorithms. The pipeline employs a CNN-based end-to-end
neural network for OCTA, which is capable of mapping
microvasculature with better image contrast and signal-to-
noise ratio (SNR) comparing to existing algorithms. Particu-
larly, vascular connectivity is also improved by laser speckle
eliminating. In order to acquire high quality labels for train-
ing, we designed an in-vivo animal imaging protocol. The
proposed method is validated through the in-vivo animal
experiments and angiography results are compared with con-
volutional methods both in cross-sectional and enface
perspective.

2 | MATERIALS AND METHODS

2.1 | OCTA techniques

OCT technique is able to generate cross-sectional (2D) and
three-dimensional (3D) images of live tissue that contain
structural information deriving from depth-resolved tissue
reflectivity. In the mid-1990s, great efforts were made for
blood flow measurement following the invention of OCT.
The Doppler principle was firstly utilized in the analysis of
the backscattered OCT signal which demonstrates promising
results [35–37]. This very first idea is based on the assump-
tion that flowing RBCs will cause a frequency or phase shift
ΔfD on OCT signal. This minor change can be acquired
through OCT signal demodulating and the blood flow veloc-
ity vRBC can be calculated by the following equation

vRBC =
λ

2n � cosθ �Δf D ð1Þ

where λ is the central wavelength of incident beam, n is the
refractive index of surrounding tissue and θ is the enclosed
angle between incident beam and flow direction. Although
Doppler OCT is able to visualize and quantify blood veloc-
ity in larger vessels, it is still inadequate for clinical use.

Recently, a new technique named OCT-based angiogra-
phy has been invented based on the variations of OCT sig-
nals. While the blood is flowing, the moving RBCs can be
considered as an intrinsic contrast agent that causes OCT
signal changing over time, in the meanwhile, the OCT signal
of surrounding biological tissue keeps steady. Several ana-
lytic algorithms have been developed through calculating
the differences in OCT signals acquired at the same location
with short time sequence. OCT signal is consisted of ampli-
tude and phase information, which can be written as a com-
plex function at lateral x, axial location z and time t in a
B-scan:

C x,z, tð Þ=A x,z, tð Þ � ei�Φ x,z, tð Þ ð2Þ

where A indicates the signal amplitude and Φ is the phase
component. For now, OCTA methods can be classified
based on what information they used and whether they used
full-spectrum or split-spectrum processing [19–27].

The split-spectrum amplitude and phase-gradient angiog-
raphy (SSAPGA) algorithm, which is recently proposed by
Liu et al [38], employs both amplitude parts and phase parts
to calculate and distinguish blood flow from static tissue.
This algorithm extracts the phase shift induced by RBC
movement (Δφv) from total phase difference (ΔφE) to elimi-
nate the false phase difference induced by bulk motion
(Δφα) and phase noise (Δφn). Eventually, the flow signal
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calculated based on phase-gradient angiography (PGA)
method could be simplified as the following equation:

FlowPGA x,zð Þ= d ΔφE x,zð Þð Þ
dz

≈
d Δφv x,zð Þð Þ

dz
ð3Þ

After combining amplitude and split-spectrum, the
SSAPGA algorithm demonstrates superior performance in
OCTA [17, 18, 38]. Therefore, we applied this OCTA
method to generate label data set, which would be further
explained in the following sections.

For comparison, another two OCTA methods were used,
namely as correlation mapping (CM) and power intensity
differential (PID). The former is based on intensity correla-
tion [26] and the latter is based on squared intensity differ-
ence [27].

2.2 | Deep learning based OCTA pipeline

In this work, we propose a deep learning based pipeline for
OCTA, which treats OCTA as an end-to-end image transla-
tion task. This pipeline consists of three parts: training data

preparation, model learning and OCTA predicting using the
trained model. Figure 1 shows the schematic description of
the proposed pipeline.

2.2.1 | Training data set

For supervised deep network training, input pairs of original
structural images and ground truth label images are required.
Generally, the ground truth is labeled by experts according
to their prior knowledge, but it is time-consuming and unac-
hievable in OCT angiography. In 2010, Mariampillai et al
found that the number of repeated B-scans has a great
impact on OCT angiography SNR [39]. Therefore, we cap-
tured 48 consecutive B-scans at each slow-axis location and
applied SSAPGA to generate label angiograms as the ground
truth that owns much higher SNR and less speckle noise
(shown as bright and dark dots in the image). To be men-
tioned, all of the 48 consecutive B-scans at each slow-axis
location are registered by rigid registration algorithm [40].
We randomly extracted four of the registered OCT structural
B-Scan images as the input of deepCNN.

FIGURE 1 Schematic description of the deep learning based optical coherence tomography angiography pipeline
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2.2.2 | Overview of CNN

Convolutional neural network (CNN) is a specialized kind
of neural network for data processing [41]. It is based on the
convolution operation, which is an operation on two func-
tions of a real-valued argument. CNN has achieved tremen-
dously success in various practical applications in different
spatial dimensions and even in time dimension.

Generally, model training is consisted of forward propa-
gation, cost function calculation and back propagation. First,
we use a feedforward neural network to accept an input x
and produce an output ŷ, information flows forward through
the network until it produces a scalar cost J(θ) through the
designed cost function. Then, back propagation algorithm
transmits the cost value back to the network through chain
rules, computing the gradient and modifies the weights of
the network.

Recently, driven by the easy access to large-scale dataset
and the enormous potential of deep learning, great pro-
gresses were achieved to help train the CNN models effec-
tively, including ReLU [42], tradeoff between depth and
width [43], dropout [44], parameter initialization [45], Adam
optimization algorithms [46] and batch normalization [47].

2.2.3 | Model evaluation and parameter
selection

During training, it is necessary to evaluate the model perfor-
mance to facilitate finding appropriate hyper parameters of
the model. For a quantitative assessment, we used additional
cross-sectional image pairs as validation set and calculated
the peak signal-to-noise ratio (PSNR) value, which is
defined as:

PSNR=10 � log10
MAX2

G

MSE

� �
ð4Þ

where G is the label image, MAXG is the maximum value of
image G and MSE is the mean square error between G and
the output image.

2.3 | Experimental setup

2.3.1 | System setup and imaging protocol

For this study, a Spectral Domain OCT with typical configu-
ration has been built, as shown in Figure 2. Briefly, the light
source is a wideband super luminescent diode with a central
wavelength of 845 nm and a full width at half maximum
bandwidth of 30 nm, offering a theoretical high axial resolu-
tion of approximately 10 μm. The light power exposure at
rat brain surface is 2.4 mW. Besides, the measured lateral
resolution is approximately 12 μm. A high-speed spectrome-
ter fitted out a fast line scan charge-coupled device (CCD)
camera with a 28 kHz line scan rate was used as the detec-
tion unit in our system.

In each volumetric scan, the field of view was 2.5 × 2.5 mm
and the imaging depth was about 1 mm. Each B-scan was
formed by 360 A-lines and a total 300 slow-axis locations were
sampled to generate a 3D OCTA volume. In order to acquire
vascular signal label with high contrast for training, we captured
48 consecutive B-scans at each slow-axis location.

2.3.2 | Animal preparation

A total of four Sprague Dawley rats of 8-9 weeks' old were
used in our animal experiments. Intraperitoneal injection of
10% chloral hydrate (4 mLkg) was performed before

FIGURE 2 Spectral Domain OCT (SD-OCT) system in this study. A, Schematic diagram of the SD-OCT system. B, 3D rendering of the SD-
OCT coupled with a digital camera for visual guidance. ① super luminescent diode, ② 50:50 coupler, ③ galvanometer, ④ digital camera, ⑤ grating, ⑥
line scan CCD camera
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beginning all surgical procedures. The rat head was fixed in
a stereotaxic frame, and the scalp is retracted. The skull was
thinned with a high-speed dental drill to generate a window
of 4 mm × 4 mm area. After craniotomy, the dura mater was
quickly removed with fine forceps. A square piece of cover
glass was placed on the exposed brain tissue, and the edge
was immediately glued onto the skull using dental resin.
During imaging, rats were first anesthetized in an induction
chamber with 3.0% isoflurane and then maintained with
1.3% isoflurane. All animal procedures were reviewed and
approved by the Subcommittee on Research Animal Care at
Beijing Friendship Hospital, where these experiments were
performed.

2.3.3 | Network structures

Our pipeline employed a deep CNNwith depth a Dl consists
of three types of layers, as shown in Figure 3. This CNN
architecture is modified from a single channel input CNN
for image denoising [31]. More specifically, the multi-
channel inputs of our network were four OCT structural
images. The first layer consists of 64 feature maps generated
by 64 filters (size = 3 × 3 × 4) and connected with ReLU
for nonlinearity. As for layer block 2 to layer block (Dl − 1),
each layer was convoluted by 64 filters of size 3 × 3 × 64,
and connects with batch normalization [47] and ReLU [42]
for faster convergence. The last layer used 1 filter
(size = 3 × 3 × 64) to generate the output.

In the architecture design, we found the network depth
has a great impact on the tradeoff between performance and
efficiency. It has been pointed out that the receptive field is
correlated with depth Dl [48], which should be calculated as
(2Dl + 1) × (2Dl + 1) in our CNN model. A larger receptive
field is able to make better use of relevant information in the
field. Additionally, patch-based image processing techniques
commonly use a 40 × 40 patch, which contains sufficient
image information to learn. Therefore, in consideration of
graphics processing unit (GPU) performance and the

receptive field size of CNNs, we set the Dl value as 20 and
extracted image patch size of 40 × 40.

2.3.4 | Implementation details

Network training is performed by minimizing the mean
squared error (MSE) loss between the generated OCTA
cross-sectional angiogram and label image. We adopted the
Adam gradient-based optimization algorithm for minimiza-
tion of the cost function [46], and the epoch was set to 50.
The convolution kernel weights were initialized using ran-
dom Gaussian distributions with a weight decay of 0.001
and a mini-batch size of 128.

3 | RESULTS AND DISCUSSION

In order to train CNN models for OCTA, a total of six data
volumes were obtained from four rats with 48 consecutive
B-scans at each slow-axis location as a result of 1800 cross-
sectional training pairs. Each training pair consists of four
randomly selected structural OCT images and one label
angiogram generated by SSAGPA method. We used 5 of the
6 volumes as training data and the remaining 1 volume as
testing data.

The OCTA cross-sectional angiogram generated from
48 consecutive B-scans and four consecutive B-scans using
different methods are shown in Figure 4A-E. Obviously, the
SNR of Figure 4A is much better and have less speckle
noise. This is the reason that we designated angiograms from
48 consecutive B-scans as the “ground truth of the dataset.”

The CNN model is trained with 194 000 iterations and
periodically assessed against the validation set. The training
time is 10 hours using parallelized training across a NVIDIA
Titan XP GPU. Figure 4C shows an example CNN output
from four consecutive B-scans. Compared with the other
methods, CNN method can eliminate speckle noise to a cer-
tain extent and enhance the blood flow signal. This is due to
the powerful modeling capability of deep neural network,

FIGURE 3 Architecture of the deep learning network in this study
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which is able to mine more intrinsic connections from OCT
signals. Enface OCTA angiograms at the representative
depth position (marked with yellow dotted line) of each
method and protocol are shown in Figure 4F-J. It can be

seen that, under the same scanning protocol, the CNN-
angiogram has better image quality and better continuity of
vasculature. To be mentioned, all the enface OCTA angio-
grams are processed by normalization and outlier elimina-
tion (4%) without any contrast adjustment. This method
aims to relieve the human visual change of OCTA angio-
gram induced by speckle noise, which is in the form of
ultra-bright dots in the image. Specifically, we eliminated
the noise by histogram thresholding.

The performance of different methods was also compared
in enface view, which is the preferred way to evaluate vascu-
latures. Figure 5 shows the maximum intensity projection
(MIP) images using different methods and scanning proto-
cols. Figure 5A is the result of SSAPGA with protocol of
48 consecutive scans at each slow-axis location, which owns
great image quality and presents more details of vasculature.
Figure 5B-E are the results of SSAPGA, CNN, PID and CM
methods with the same protocol (four consecutive scans at
each slow-axis location), respectively. Such protocol is com-
monly used in OCTA devices. One section of detailed
enface OCTA angiogram is selected and marked with yellow
dotted line. The corresponding enlarged images are shown
in Figure 5F-J. Compared to other methods, microvessel net-
work pointed by red arrow from CNN method presents bet-
ter SNR and the vascular network is more clear and distinct.
The vessel pointed by brown arrow from CNN method has a
great uniformity because the speckle noise is totally
smoothed. We speculate this effect to the MSE loss function
used in CNN network training procedure. However, it would
potentially generate blurry cross-sectional OCTA angiogram
and cause loss of details (Figure 4C) which can further cause
distortion at enface angiogram (marked by green dotted cir-
cle in Figure 5H).

For further investigation, we decreased the number of
CNN input channels, since the OCTA technology is suffer-
ing from imaging speed, which is caused by limitation of
detector. In this work, 3-channel and 2-channel CNN models
were further modified and trained. The enface view of
OCTA angiograms with different methods and inputs are
presented and compared in Figure 6. One selected region
consists of microvessel (marked with red line) is enlarged
(zoomed in twice). It turns out that CNN is able to eliminate
speckle noise, resulting in clean background and visually
continuous vascular. Besides, CNN provides legible vessel
outlines and presents much more details than SSAPGA, PID
and CM.

In addition, the degrees of convergence are evaluated and
plotted in Figure 6P. It shows that all of the models with dif-
ferent inputs have fast convergence due to batch normaliza-
tion and ReLU. Apparently, the number of the inputs has a
great impact on the performance of our CNN models, which
is in line with conventional algorithms.

FIGURE 4 Example cross-sectional optical coherence
tomography angiography angiogram generated from
(A) 48 consecutive B-scans using split-spectrum amplitude and phase-
gradient angiography (SSAPGA), (B-E) four consecutive B-scans
using SSAPGA, convolutional neural network, power intensity
differential and correlation mapping respectively. F-J, Enface OCTA
angiograms at the representative depth position (marked with yellow
dotted line) of each method and protocol
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Quantitative analysis was conducted for comparison stud-
ies. We calculated the PSNR and structural similarity [49],
which are commonly used in image to image translation
tasks, between the predicted output and the ground truth.
Quantitative analysis results of cross-sectional angiograms
with different methods and protocols are presented in
Table 1. As shown in the table, the CNN method is superior
to the other methods with same scanning protocol. CM and
PID present poor performance since they are sensitive to
noise. Surprisingly, the performance of CNN method with
two inputs outperforms SSAPGA with four inputs, which
indicates great potentials of applying deep learning tech-
niques to OCTA. The scanning time could be significantly
reduced with good angiography performance.

Furthermore, we quantitatively compared enface MIP
angiograms (size = 300 × 360) with different methods and
protocols of the one testing volume after normalization. The
results are shown in Table 2. As before, the CNN method
demonstrates superior performance than the other methods.

One of the potential mechanisms of the deep learning
model may be similar to the speckle-variance processing
method, which measures decorrelation between the OCT
signals generated by speckle or backscattered light from bio-
logical tissues. However, the deep learning model can fur-
ther utilize the structural information and then eliminate
speckle noise and background noise induced by OCTA
imaging systems. Additionally, our label dataset is generated
without any expert-labeling, which allows us to acquire a
large amount of dataset for training. Therefore, our approach
can be quickly applied to the other OCTA devices but
avoiding from the possible influence of background noise
induced by system nonlinearity. Additionally, this proposed

pipeline has great potential in clinical use (ie, ophthalmol-
ogy, dermatology).

However, there are still some limitations remained in this
work. Each of the angiogram slide is not registered accu-
rately, which raises the wavy artifacts along the slow axis.
This is mainly caused by random galvanometer jitter, which
is hard to correct. Another issue is that the intensity unifor-
mity between angiogram slides is also influenced. Such issue
is probably caused by the structure of our CNN model. Nev-
ertheless, we believe these limitations can be solved by opti-
mizing neural network and utilizing enface structural
information.

4 | CONCLUSION

In this study, we propose a deep learning based pipeline as
an alternative to conventional analytic OCTA algorithms.
Benefiting from the powerful ability of data mining, our pro-
posed CNN model can be trained to extract and analyze the
OCT signal variation at different time points. Compare with
the conventional methods, the image quality of cross-
sectional angiogram is greatly improved with better SNR
and speckle variance eliminating, resulting in further
improvements in image quality and vessel connectivity of
enface angiogram.
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FIGURE 6 The enface view of optical coherence tomography angiography (OCTA) angiograms with different methods and inputs. A-O, En-
face maximum intensity projection OCTA angiograms with different methods and scanning protocols. One selected region consists of microvessel
(marked with red line) is enlarged and shown (zoomed in twice). P, Learning curves of the convolutional neural network model with three different
protocols. The scale bar = 400 μm

TABLE 1 Average PSNR(dB)\SSIM
results of the cross-sectional angiograms
with different methods and protocols

CM PID SSAPGA CNN

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

4 inputs 18.95 0.24 18.90 0.22 20.79 0.69 26.33 0.80

3 inputs 18.56 0.22 17.94 0.18 19.69 0.64 26.22 0.78

2 inputs 17.60 0.18 16.29 0.13 18.49 0.56 25.28 0.73

Note: The best results are highlighted.
Abbreviations: CM, correlation mapping; CNN, convolutional neural network; PID, power intensity differential;
PSNR, peak signal-to-noise ratio; SSAPGA, split-spectrum amplitude and phase-gradient angiography; SSIM,
structural similarity.
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