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Abstract
Classical parametric speech coding techniques provide a com-
pact representation for speech signals. This affords a very low
transmission rate but with a reduced perceptual quality of the
reconstructed signals. Recently, autoregressive deep generative
models such as WaveNet and SampleRNN have been used as
speech vocoders to scale up the perceptual quality of the recon-
structed signals without increasing the coding rate. However,
such models suffer from a very slow signal generation mech-
anism due to their sample-by-sample modelling approach. In
this work, we introduce a new methodology for neural speech
vocoding based on generative adversarial networks (GANs). A
fake speech signal is generated from a very compressed rep-
resentation of the glottal excitation using conditional GANs as
a deep generative model. This fake speech is then refined us-
ing the LPC parameters of the original speech signal to obtain
a natural reconstruction. The reconstructed speech waveforms
based on this approach show a higher perceptual quality than
the classical vocoder counterparts according to subjective and
objective evaluation scores for a dataset of 30 male and female
speakers. Moreover, the usage of GANs enables to generate
signals in one-shot compared to autoregressive generative mod-
els. This makes GANs promising for exploration to implement
high-quality neural vocoders.
Index Terms: speech coding, deep learning, generative adver-
sarial networks, neural vocoder.

1. Introduction
Speech coding is one of the fundamental functionalities of
current multimedia communication systems over band limited
transmission channels [1]. The conventional approaches for
coding speech signals are based on the source-filter model, in
which a speech signal is decomposed into its glottal excitation
source signal and its vocal tract filter parameters [1]. Linear
predictive coding (LPC) is used for implementing such source-
filter modelling of speech signals [1]. This is incorporated in
many speech coding standards such as AMR-WB [2]. Vocoding
is the process of describing speech signals in a fully parametric
manner [1]. This provides the ability to build speech synthesiz-
ers operating based on the acoustic parameters which represent
the target speech signal. The classical vocoding methods are de-
veloped based on hand-crafted acoustic parameters that mainly
replace the glottal excitation, e.g. F0, VUV, etc. However, the
reconstructed speech waveform according to such methods is
well known to be synthetic and low in perceptual quality.

Recently, autoregressive (AR) deep generative models have
shown a great success in generating raw audio and speech
waveforms especially after the emergence of WaveNet [3] and
SampleRNN [4]. Both WaveNet and SampleRNN have been
used as neural vocoders for reconstructing speech signals from

the hand-crafted parametric representation of the source filter
model [5, 6]. The reconstructed speech signals using such neu-
ral vocoders are clearly high in their perceptual quality and even
outperform the classical speech codecs such as AMR-WB. Un-
fortunately, this comes with the problem of very slow signal
generation due to the sequential sampling of AR deep gener-
ative models. Therefore, additional techniques such as proba-
bility density distillation are required for running in real time
[7].

Generative Adversarial Networks (GANs) provide an alter-
native approach for very fast generation of realistic data samples
[8]. GANs learn implicitly to estimate the PDF underlying the
original data in order to directly generate new samples. This is
achieved by a minimax adversarial training between a generator
network that creates fake data and a discriminator network that
compares it to the original data [8]. When the training reaches
an equilibrium state, the discriminator becomes fooled by the
fake data created by the generator network, which is the target
deep generative model.

The usage of GANs for speech vocoding is very recent and
was firstly introduced by Bollepalli et al. [9] and Juvela et al.
[10]. The main idea of such approaches for GAN-based vocod-
ing is to generate the glottal excitation signal adversarially and
then apply synthesis filtering to obtain the speech waveform.
However, this incorporates recurrent neural network architec-
tures for predicting the voicing information and building a pulse
model before creating the excitation signal with GANs.

This paper proposes a new method for generating speech
signal waveforms from a learned-compressed representation of
the glottal excitation. The method uses GANs as an end-to-end
fully-convolutional generative model that produces raw speech
waveforms in one-shot. A simple refinement based on LPC is
applied to the generated speech waveform in order to obtain a
natural final reconstruction, without considerably affecting the
overall complexity. An overview of this method is given in sec-
tion 2, followed by a description of the experimental setup in
section 3. Evaluation results are reported and discussed in sec-
tion 4, to end up with conclusions in section 5.

2. Analysis by Adversarial Synthesis
Besides the ability of one-shot sample generation, GANs can
create realistic data from a totally-abstract noise prior (e.g.,
Gaussian noise). The adversarial training makes it possible to
map a simple prior distribution into complicated real-world dis-
tributions in a high-dimensional space. This has been achieved
efficiently for image synthesis [11] and recently for general au-
dio synthesis [12].

The speech vocoding task is described by a conditional gen-
eration process, so that the noise prior of the GAN model is con-
verted into a parametric representation for the desired speech



Figure 1: Illustration of AbAS.

signal. To accomplish this, the glottal excitation signal, repre-
sented by the residual of an LPC analysis filtering of the speech
waveform [1], is fed to a neural encoder network. The residual
is a noise-like signal as it is uncorrelated and almost spectrally-
flat [1]. Thus, it is a good candidate to be compressed by the en-
coder network. This results in a learned conditional noise prior,
which is a characteristic representative for the speech signal.

2.1. Conditional Adversarial Synthesis

Using the learned compressed representation of the residual sig-
nal as an input, a fake speech waveform is created using a deep
generative model implemented by GANs. The generator net-
work consists of two main blocks. The first block is called
the context decoder. It maps the conditional prior input (i.e.,
the context vector) into a multi-channel hidden representation
to enable reliable signal generation. While the second block
is called the adversarial upsampler and it learns to upsample
the context decoder output until reaching the desired signal res-
olution. The cascade of the residual neural encoder with the
generator network gives a conditional generator model, which
is trained jointly with the discriminator model.

2.2. Cross Synthesis

The fake speech waveform generated with GANs contains the
main global and prosodic features of the target signal, espe-
cially at the first formants. However, some of phonemes and
local details are missed due to the fast progressive generation of
the speech waveform. Moreover, the adversarial training proce-
dure does not follow a maximum-likelihood approach as in the
AR generative models. This results in a considerable amount
of reconstruction artifacts that affect the perceptual quality of
the fake signal. To solve this issue, we propose to replace the
spectral envelope of the fake speech with the original spectral
envelope. This is done by an LPC analysis applied to the fake
speech signal to obtain its fake residual. The fake residual is
then filtered by the LPC parameters of the original speech sig-
nal to obtain a natural signal reconstruction. Hence, we name
the whole process Analysis by Adversarial Synthesis (AbAS),
which is illustrated in Figure 1.

3. Model Configuration and Training Setup
For training and testing the generative model, we used the clean
speech signals of the dataset created by Valentini et al. [13].
It is an open source dataset of 15 male and 15 female speakers
selected from the Voice Bank corpus introduced by Veaux et al.
[14]. The training data is constructed by the speech signals of
28 speakers, divided equally between males and females. While
the test data are represented by speech of the remaining two
speakers. The speech signals are downsampled from the orig-
inal sampling rate of 48 kHz to 16 kHz which is our operating
sampling rate. Furthermore, the corresponding glottal excita-

tion signals are created by applying LPC analysis filtering of
order 16 to the speech signals, with a frame length of 20 ms.

3.1. Residual Neural Encoder

This network converts the LPC residual at sampling rate 16 kHz
into a learned context vector of 1 kHz. The context vector is the
conditional prior required for generating the target fake speech.
The network consists of a stack of 4 downsampling convolu-
tional layers. The downsampling is done by a 1D-convolution
operation with kernel width 64 and stride 2, so that each layer
downsamples its input by a factor of two. Parametric recti-
fied linear unit (PReLU) [15] is used for activation. Reflec-
tion padding is used for adjusting the signal length during the
learned downsampling process. This results in the following
feature maps starting from the input residual until the output
of the fourth layer: 16000×1, 8000×32, 4000×64, 2000×64,
1000×128. Finally, the output of the fourth layer is fed to a
compressor represented by a convolutional layer with kernel
size 65 and one output channel to obtain the context vector.

3.2. Generator Network

3.2.1. Softmax-gated CNN

One important feature of the generator network is the softmax-
gated CNN layer. It is defined and implemented similarly to the
sigmoid-gated CNN of WaveNet [3]. However, the sigmoid op-
eration is replaced with a softmax along the channel dimension
of the gate output. Thus, the output of this gated layer is given
as follows:

output = tanh (Wf ∗X)� softmax(Wg ∗X)|c, (1)

where X is the input to the gated-CNN layer, Wf are the
weights of the 1D-convolutional filter, Wg are the weights of
the 1D-convolutional gate, ∗ denotes the convolution operation
and � denotes the element-wise multiplication. For all gated-
CNNs layers in the generator model, a kernel of width 65 is
used for both the filtering and gating operations with reflection
padding to maintain the signal length.

3.2.2. Context Decoder

This block consists of a stack of 10 identical gated-CNN layers
that generate a hidden representation of 64 channels for the con-
text vector learned by the residual encoder. It was found more
effective than direct upsampling as it reduces the reconstruction
artifacts of the generated fake signal. A 1×1 convolution op-
eration precedes this block to create 64 channels of the context
vector ready for manipulation.

3.2.3. Adversarial Upsampler

The adversarial upsampler converts the multi-channel context
decoder output of 1 kHz/channel into a single channel fake
speech of 16 kHz. This is done by progressive upsampling us-
ing 4 layers. Each layer applies 1D-transposed convolution with
kernel width 66 and stride 2 in order to obtain an output with
doubled length compared to the layer input. Moreover, each
layer passes the output of the transposed convolution through a
gated-CNN without changing the dimensionality to refine and
activate the upsampling. In parallel to this, a Gaussian noise
of zero mean and unit variance is independently upsampled and
shaped using transposed convolution without activation. This
noise is used for compensating the missing fine details of the



Figure 2: The adversarial upsampler network.

speech signal during the residual compression task, e.g. un-
voiced speech parts and background noise. It is then concate-
nated along the channel dimension with the actual signal gen-
eration path at every upsampling stage. The upsampler block
diagram and the feature maps throughout the signal generation
path are illustrated in Figure 2. Note that the Gaussian noise
has the same dimensionality as the signal feature maps at ev-
ery upsampling stage. So that the input channels at each signal
upsampling stage are equally divided between the noise chan-
nels and the signal channels from the previous stage. The out-
put layer applies 1D-convolution with kernel width 65 and tanh
non-linearity.

3.3. Conditional Adversarial Training

A conditional generative adversarial network (CGAN) is trained
with the same technique used for image-to-image translation
[16]. The conditional discriminatorD receives a 2-channel con-
catenation of the residual and the corresponding original/fake
speech signals. The network of D comprises 6 1D-CNN lay-
ers with stride 2 and kernel width 32 per each. LeakyReLU
[15] with a leakage factor of 0.2 is used for activating all lay-
ers, except the last one where only the convolution operation is
applied. The channel depths starting from the input until the
output of D are: 2, 16, 16, 32, 32, 64 and 32. Spectral normal-
ization [17] is applied to all convolutional layers of D to ensure
the Lipschitz continuity that is required for stable adversarial
training using distance-based loss functions [18]. The condi-
tional generator G is the cascade of the residual encoder, the
context decoder and the adversarial upsampler networks which
are trained jointly. We have also applied spectral normalization
to all convolutional layers of G as this was found helpful for
better training stability [19]. The adversarial training of D is
driven by the adversarial hinge loss [19]:

LD = −Ex∼pspeech,r∼presidual [min(0,−1 +D(x, r))]

−Ez∼pz ,r∼presidual [min(0,−1−D(G(z, r), r))],
(2)

where LD is the total conditional loss ofD, pspeech denotes the
original speech data, presidual denotes the residual data, pz is
the Gaussian noise used during the adversarial upsampling and
G(z, r) denotes the fake speech data. For training G, the total

loss function LG is given by the following convex form:

LG = γEx∼pspeech,z∼pz ,r∼presidual [||G(z, r)− x||1]
−(1− γ)Ez∼pz ,r∼presidual [D(G(z, r), r)],

(3)

with regularization factor γ of 0.00015. Both D and G are
optimized alternately with equal number of training iterations.
Adam optimizer with AMSGRAD [20] is used, with lr = 0.0006
forD / 0.00015 forG and β = [0.5, 0.99]. Xavier algorithm [21]
is used for initializing the weights for both D and G. The batch
size is 32.

4. Results
The main outcome of this work is the ability of CGANs to
create realistic speech waveforms in one-shot from a highly
compressed representation of the glottal excitation. This is en-
hanced by the cross synthesis step in order to obtain a natural
reconstruction, as illustrated in Figure 3.

Figure 3: GANs for speech vocoding: A fake speech signal is
generated by CGAN (middle) at 16 kHz from the 1 kHz learned
compression of the residual signal. This fake signal preserves
the main spectral and prosodic features of the original speech
(top) especially at the low frequency bands. However, it is more
challenging to accurately reconstruct the high frequency details
and the background noise of the original signal. That is why
the cross synthesis step is incorporated to refine the fake speech
signal using the original LPC parameters, which results in a
natural final reconstruction (bottom).

The gated activation is more robust than the ReLU-based
one for penalizing the reconstruction artifacts. This is reflected
by the higher spectral resolution of the fake signal in case of
softmax-gated activation (Figure 3 middle) compared to the
PReLU activation (Figure 4). Furthermore, using the softmax
along the channel dimension of feature maps of the gate output
is more effective than the element-wise sigmoid. The L1 loss
curve of the conditional generator shows a faster decay with
softmax than the sigmoid case, as illustrated by Figure 5. A
possible reason for this is that the softmax along the channel
dimension models the relationship between the frequency bins
of the signal at every time instant. This leads to a probability
mask that gives a higher weight to the frequency bins which are
more relevant to the desired samples of the target signal, while



penalizing the artifacts with lower weights to their frequency
components.

Figure 4: Fake speech using PReLU activation in the generator
network.

Figure 5: Outperformance of the proposed softmax gating over
the sigmoid one in terms of the L1 reconstruction loss.

The proposed AbAS approach is assessed by objective and
subjective perceptual evaluation measures. This is done in com-
parison with the classical vocoder introduced by Hedelin [22]
and refined by Klejsa et al. [6]. There is no quantization ap-
plied to the compressed representation of signals for both the
classical vocoder and AbAS. We only focus on evaluating the
signals reconstructed from the non-quantized parametric repre-
sentation.

4.1. Objective Evaluation

We resort to the 5 objective measures used by Pascual et al. for
evaluating the SEGAN [23]: PESQ-WB, CSIG, CBAK, COVL,
SSNR. In addition, we use the ViSQOL perceptual objective
score [24]. All of these measures give their result in mean opin-
ion score (MOS), except for the SSNR which is in dB. This
ensures a precise evaluation of the proposed approach in terms
of perceptual quality and robustness against the reconstruction
artifacts. Table 1 shows how AbAS outperforms the classical
vocoder reconstructions.

Table 1: Objective evaluation results, 40 speech signals are ran-
domly selected from both the training and testing datasets for
assessment.

Metric ValidationSet TestSet
Vocoder AbAS Vocoder AbAS

ViSQOL[MOS] 2.9062 3.1355 2.9161 3.1065
PESQ-WB[MOS] 2.5138 2.8234 2.3065 2.5977

CSIG[MOS] 4.1234 4.4876 3.9771 4.3143
CBAK[MOS] 2.4697 3.0317 2.3760 2.8720
COVL[MOS] 3.2941 3.6596 3.1146 3.4534

SSNR[dB] -2.1973 3.1438 -2.0200 2.5865

4.2. Subjective Evaluation

A MUSHRA listening test [25] is performed by 7 subjects to
evaluate the perceptual quality of 20 reconstructed speech sig-

nals for males and females. The CGAN model is trained with
600 epochs. Most of the AbAS reconstructions are more per-
ceptually preferred than the classical vocoder ones. It is worth
mentioning that longer training with more data should give bet-
ter results due to the better approximation of data modalities by
CGAN. But we just emphasize here the proof of the concept.
It was also found that the perceptual quality can be scaled by
increasing the cross synthesis parameters as this compensates
the degradation of the missing phonemes which are not well
reconstructed with CGAN due to the sub-optimal distribution
modelling.

Figure 6: MUSHRA differential scores of AbAS w.r.t classical
vocoder.

Instead of AbAS, we tried to generate a fake residual from a
very compressed representation with CGAN and hence apply an
LPC synthesis using the original LPC parameters to reconstruct
the speech signal. However, this gave poor results compared
to AbAS. That is because the discriminator is stronger in re-
jecting fake uncorrelated signals (i.e., residuals) than correlated
ones, which makes it harder to generate realistic residuals from
a compressed representation. Figure. 7 illustrates this finding.

Figure 7: Higher discriminator loss for generating fake residual
compared to fake speech, which indicates a lower quality for the
generated residual samples.

5. Conclusions
This paper introduces a new method for neural speech vocod-
ing, with much faster generation than autoregressive generative
models and higher perceptual quality than classical vocoding.
The method, which is called analysis by adversarial synthe-
sis (AbAS), starts with generating a fake speech signal from
a neurally-learned parametric representation of the glottal ex-
citation using conditional GANs. This is accompanied by an
LPC cross synthesis step, using the spectral envelope parame-
ters of the original speech, to obtain a natural reconstruction. A
possible future work is to explore better convolutional architec-
tures for the generator model to reduce the reconstruction arti-
facts. Further work can be done to investigate the possibility of
predicting the cross synthesis parameters from the fake speech.
This makes it promising to optimize this approach for compet-
ing with advanced classical speech codecs at considerably lower
coding rates.
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