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Abstract

Diagnostic stroke imaging with C-arm cone-beam computed tomography (CBCT)
enables reduction of time-to-therapy for endovascular procedures. However, the
prolonged acquisition time compared to helical CT increases the likelihood of rigid
patient motion. Rigid motion corrupts the geometry alignment assumed during
reconstruction, resulting in image blurring or streaking artifacts. To reestablish the
geometry, we estimate the motion trajectory by an autofocus method guided by a
neural network, which was trained to regress the reprojection error, based on the
image information of a reconstructed slice. The network was trained with CBCT
scans from 19 patients and evaluated using an additional test patient. It adapts well
to unseen motion amplitudes and achieves superior results in a motion estimation
benchmark compared to the commonly used entropy-based method.

1 Introduction

Mechanical thrombectomy [16, 2] is guided by an interventional C-arm system capable of 3-D
imaging. Although its soft tissue contrast is comparable to helical CT scans, the prolonged acquisition
time pose C-arm CBCT more susceptible to rigid head motion artifacts [13]. In the clinical workflow,
however, it is desirable to reduce the time-to-therapy by avoiding prior patient transfers to helical CT
or MR scanners [18]. To this end, robust motion compensation methods are desirable.

Methods for rigid motion compensation can be clustered in four categories: 1) image-based autofocus
[19, 21], 2) registration-based [15], 3) consistency-based [5, 17] and 4) data-driven [3, 12, 11].

Recent data-driven approaches use image-to-image translation methods based on GANs [12, 11] or
aim to estimate anatomical landmarks in order to minimize a reprojection error (RPE) [3]. The latter
approach does not provide the required accuracy, whereas GAN-based approach are deceptive for
clinical applications, as the data-integrity cannot be assured [8].

We propose a learning-based approach for rigid motion compensation ensuring data integrity. An
image-based autofocus method is introduced, where a regression network predicts the RPE directly
from reconstructed slice images. The motion parameters are found by iteratively minimizing the
predicted RPE using the Nelder-Mead simplex method [14].

2 Motion Estimation and Compensation Framework

Autofocus Framework: Rigid motion is compensated by estimating a motion trajectoryM which
samples the motion at each of the N acquired views within the trajectory [10].M contains the motion
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matrices Mi, where each motion matrix Mi ∈ SE(3) — with SE(3) being the special Euclidean
group — describes the patient movement at view i ∈ [1, N ]. The motion matrices can be incorporated
in the backprojection operator of a filtered backprojection-type (FBP) reconstruction algorithm. We
denote the reconstructed image in dependence of the motion trajectory by FBPy(M), where FBPy

is the FDK-reconstruction [4] from projection data y. In the following, FBPy will reconstruct the
central slice on a 5122 pixel grid using a sharp filter kernel to emphasize motion artifacts.

Typical autofocus frameworks (cf. [19]) estimate the motion trajectory based on an image quality
metric (IQM) evaluated on the reconstructed image by minimizing

argmin
M

IQM(FBPy(M)) . (1)

A common problem in solving (1) is the non-convexity of the IQM, which is typically chosen to be
the image histogram entropy or total variation of the reconstructed slice. To overcome this limitation,
we propose to replace the IQM by a network architecture that is trained to regress the RPE, which
was shown to be quasi convex for a geometric reconstruction problem [9].

Learning to Assess Image Quality: Let X be a set of 3-D points x ∈ P3 uniformly sampled from
a sphere surface and let the acquisition trajectory associated to a dataset y be defined by projection
matrices Pi ∈ R3×4 mapping world points on the detector of a CBCT system at view i [6], then the
RPE is computed as

RPE(M) =
1

|X |N
∑

x∈X ,i∈N
||PiMix−Pix||22 . (2)

This metric measures the reconstruction-relevant deviations induced by motion [20] and can thus be
expected to be estimated directly from the reconstruction images. To this end, we device a regression
network learning the RPE directly from a reconstructed image. Our regression network R consists of
a feature extraction stage, pretrained on ImageNet and realized by the first 33 layers from a residual
network, [7] followed by a densely connected layer defining the regression stage. The cost function L
of the network is defined by the difference between the network-predicted RPE from a reconstruction
slice with simulated motion trajectoryM and the corresponding RPE as defined by Eq. (2)

L = ||R(FBPy(M))− RPE(M)||22 . (3)

For training, the projection data y is ensured to be motion free, such that motion artifacts solely
source from the virtual motion trajectoryM. For training and testing, we use CBCT acquisitions
(Artis zee Q, Siemens Healthcare GmbH, Germany) of the head (N = 496) acquired from 20 patients
which were split in 16 for training 3 for validation and 1 for testing. For each patient we simulate 450
random motion trajectories resulting in a training set of 7650 reconstructions.

3 Experiments and Results

For motion generation, we use rotational movements along the patient’s longitudinal axis. The motion
trajectory is modeled by an Akima spline [1] with 15 equally distributed nodes inducing RPEs ranging
from 0mm to 0.6mm. With the RPE measurement being sensitive to constant offsets, not inducing
motion artifacts, we further only use motions affecting a third of the acquisition.

First, we inspect how well the network is able to regress the RPE on test and validation data. Then, in
in an inverse crime scenario — i.e. the modeling capacity of the spline used for motion generation
is equal to the spline used for motion compensation — we inspect the behavior for motion types
significantly varying in their shape from any motion seen during training. In a last experiment we
compare the performance of the network with a state-of-the-art IQM utilizing the histogram entropy.
Therefore, we deploy an inverse crime scenario and a more realistic case where we use 10 spline
nodes for motion generation and 20 nodes for compensation.

Regression Network: We use Adam optimization with learning rate of 0.00001 and select the
network parameters that achieved the best RPE prediction on our validation dataset. Our network
achieves an average RPE deviation from the Gt of 0.031mm on the test dataset, as depicted in Fig. 1.
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Figure 1: Network estimated RPE and different reconstructions, all revealing a RPE of ≈ 0.34mm.
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Figure 2: Left: Network-predicted and Gt RPE in each iteration step of the optimization. Right:
Simulated motion trajectory and estimated motion trajectory after optimization.

Network Inference for Motion Compensation: Using the test patient, the network behavior for
motion exceeding the RPE of the training process is inspected in an inverse crime scenario. The
simulated motion trajectory is depicted in Fig. 2 together with the estimated motion trajectory after
optimization using the network as IQM (cf. Eq. 1). For each iteration of the optimization process
the network predicted RPE together with the corresponding Gt RPE is depicted. While the RPE is
underestimated within the first iterations, the proportionality is still kept, guiding the optimization to
a motion free reconstruction.

Figure 3 compares the proposed network-based IQM with the entropy-based IQM. The optimization
process is identically for both metrics. In an inverse crime scenario both methods can restore the
original image quality, however, in a more realistic setting the image entropy is stuck in a local
minimum, whereas the network is able to lead the optimization to a nearby motion-free solution.

4 Conclusion and Discussion

We present a novel data driven autofocus approach lead by a convolutional neural network. The
network is trained to predict the RPE given a slice of a CBCT reconstruction. The final motion
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Figure 3: Reconstructions of the test patient using [500-2000] HU window. In the inverse crime
scenario, the SSIM to the Gt is 0.84 (Ent/Gt) and 0.95 (Pro/Gt), respectively for the entropy (Ent) and
proposed (Pro) measure. For the more realistic setting (Clinical Setting) the SSIM is 0.65 (Ent/Gt)
and 0.84 (Pro/Gt), respectively.
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compensated reconstruction is solely based on the projection raw-data and the estimated motion
trajectory. This allows us to device a learning-based motion compensation approach while ensuring
data integrity. We showed that the network is capable of generalizing well to unseen motion shapes
and achieves higher SSIM compared to a state-of-the-art IQM measure.

Disclaimer: The concepts and information presented in this paper are based on research and are not
commercially available.
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