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Abstract. Enforcing geometric consistency of an acquired cone-beam computed tomography scan has been shown to
be a promising approach for online geometry calibration and the compensation of rigid patient motion. The approach
estimates the motion parameters by solving an optimization problem, where the cost function is the accumulated
consistency based on Grangeat’s theorem. In all previous work, this is performed with zero-order optimization methods
like the Nelder-Mead algorithm or grid search. We present a derivation of motion gradients enabling the usage of more
efficient first-order optimization algorithms for the estimation of rigid patient motion or geometry misalignment. We
first present a general formulation of the gradients, and explicitly compute the gradient for the longitudinal patient
axis. To verify our results, we compare the presented analytic gradient with a finite difference. In a second experiment
we compare the computational demand of the presented gradient with the finite differences. The analytic gradient
clearly outperforms the finite differences with a speed up of ∼ 35 %.

1 Introduction

In neuroradiology, 3-D imaging with an interventional C-arm cone-beam computed tomography
(CBCT) system can enable a reduced time-to-therapy.1 By replacing the conventional CT scan,
diagnosis and treatment for stroke therapy can be performed on the same system. A drawback is
the prolonged acquisition time and inherently resulting amplified patient motion.

Grangeat’s theorem2 can be used to compare redundant areas in the acquired projections. Rigid
motion defects the redundancy measure and the projections reveal inconsistency. Thus, Grangeat’s
theorem can be used for restoring consistency by estimating motion parameters using the raw
projection data only. The consistency measure was applied for the compensation of geometric
jitter.3, 4 Frysch et al. proposed an optimization scheme utilizing Grangeat’s theorem for head
motion compensation based on the Nelder-Mead method5 and Preuhs et al. introduced symmetry
priors for the estimation of head motion with Grangeat’s consistency.6

All methods utilize zero-order optimization, by successively evaluating the consistency with
different motion configurations. In this work, we derive motion gradients for the estimation of mo-
tion parameters with Grangeat’s theorem, enabling first-order optimization algorithms. We derive
a general formulation based on epipolar consistency (EC) and explicitly compute the gradient for
the longitudinal patient direction.

2 Methods

The comparison of redundant data based on Grangeat’s theorem is performed by finding pairs of
epipolar lines in two projections defined by their projection matrix Pa, Pb and the measured raw
data. A transformation of these two lines must be equal according to Grangeat’s theorem. We
denote the transformed value Consistency Intermediate Value (CIV) which can be precomputed
as a look-up-table (LUT) for each projection7, 8 from the measured raw data. The LUT is a (fil-
tered) transformation of the projection domain to the sinogram domain. The sinogram domain is
parameterized by a u-direction, which describes the offset of a line, and a v-direction, describing
the orientation of a line. Thus, the CIV corresponding to an epipolar line — defined by angle



and offset — is found at the respective u and v coordinate on the LUT. Aichert et al. presented
an efficient algorithm8 to evaluate the consistency by comparing CIV pairs. It is based on a plane
rotating around the line connecting two source positions ~s� with � ∈ a, b. The epipolar lines are
found by intersecting the planes with the detectors. With the line parameters κ�1,κ

�
2 and κ�3, the

CIV value of both lines can be looked up by computing the u and v values from the line using the
mapping functions φ�

u and φ�
v. The distance between the two CIV values determines the epipolar

consistency. We use the robust Geman-McClure norm as distance measure. Therefore, we define
the consistency as ECC(~x) = d(~x)2

1+σ d(~x)2 where d(~x) is the difference of the respective CIV values
d(~x) = Fa(ua(~x), va(~x)) − Fb(ua(~x), vb(~x)) and ~x defines the motion parameters. The partial
derivatives of the consistency measure are defined by
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The right part of Eq. (1) is computed as ∂F�(u�(~x),v�(~x))
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. This
describes the partial derivatives of the LUT containing the CIVs, and the partial derivatives of the
mapping function w.r.t. u and v, respectively. The partial derivatives of the CIVs is obtained as cen-
tral differences of the LUT. With the mapping functions being defined by φ�
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In the following we restrict our derivation to the gradient in tz direction and w.l.o.g. assume that
projection a is moving, while projection b remains static. Preuhs et al. proposed to replace the
projection of a plane with the projection of a line at infinity.9 This is constructed as the incident of
the plane with the plane at infinity, which allows to define new projection matrices P̃ � defined as

P̃ � =
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Exploiting Eq. (4) the line parameters for the mapping functions (cf. Eq. (2),(3)) are derived as

κ�1(tz) = a(tz)p̃
�
11 + b(tz) p̃

�
12 + c(tz) p̃

�
13 (5)

κ�2(tz) = a(tz)p̃
�
21 + b(tz) p̃

�
22 + c(tz) p̃

�
23 (6)

κ�3(tz) = a(tz)p̃
�
31 + b(tz) p̃

�
32 + c(tz) p̃

�
33 , (7)

where the parameters a(tz), b(tz) and c(tz) describe the normal of the epipolar plane w.r.t. a tz
translation of projection a. With sa,i being the components of the source position ~sa, the plane
normals are computed as

a(tz) = (q sa,3 − psa,2 − qtz + r) (8)
b(tz) = (p sa,1 − s sa,3 + s tz + t) (9)
c(tz) = (s sa,2 − q sa,1 − u) , (10)



where p, q, r, s, t, u are the Plücker8, 9 coordinates of a line incident to the epipolar plane inde-
pendent of tz — typically incident to ~sb. To evaluate Eq. (2) and (3) we further need the partial
derivatives of Eq. (8)-(10) w.r.t. tz defined by
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where the derivatives of the plane normal are defined by
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This defines all components need to compute the motion gradient in tz direction defined by Eq. (1).

3 Evaluation and results

Numeric proof of gradient. To verify our results we implemented the tz gradient for EC in
OpenCL using the software framework CONRAD.10 The gradient is evaluated at different tz trans-
lations simulating patient head motion. Therefore, we have acquired a short scan of a head phantom
with a robotic C-arm system (Artis zeego, Siemens Healthcare GmbH, Germany) and manipulated
the projection matrices. The simulated motion ranges from −0.5 mm to 0.5 mm. To verify the re-
sults, the finite differences based on the conventional EC8 are computed using central differences.
Both curves are depicted in Fig. 1. It can be observed, that the analytic gradient is slightly closer
to zero at the motion free — ground truth — position (tz = 0).
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Fig 1 Numeric proof of derived tz gradient.

Runtime comparison. In a second experiment we compared the runtime of the analytic with the
numeric gradient. Both gradients are implemented on the GPU. We have measured the duration of
100 function calls, on a dataset consisting of 248 projections. On average, a single function call of
the numeric gradient has a runtime of 120± 1 ms, and the analytic gradient of 85± 1 ms.



4 Discussion

We have proposed a general formulation of motion gradients for EC and explicitly derived the
tz motion gradient. The profile of the analytic and numeric gradient is as expected very similar,
but the numeric gradient is a bit smoother. Other imaging artifacts as scatter or beam hardening
degrade the EC and appear as noise in the gradient.7 This is observable in the analytic gradient,
whereas the approximation characteristics of the finite differences reveal a smoothed curve.

While current literature utilizes zero-order optimization only, the proposed motion gradients
enable first-order optimization strategies. Motion estimation using EC is challenging due to its
inherent sensitivity depending on the motion direction. Therefore, specialized optimization strate-
gies must be applied.5 The provided gradients of this work have the potential to further improve the
optimization schemes to provide high image quality also in the presence of rigid patient motion.
Disclaimer: The concepts and information presented in this paper are based on research and are
not commercially available.
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