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Abstract. Open gantry C-arm systems that are placed within the in-
terventional room enable 3-D imaging and guidance for stroke therapy
without patient transfer. This can profit in drastically reduced time-to-
therapy, however, due to the interventional setting, the data acquisition
is comparatively slow. Thus, involuntary patient motion needs to be es-
timated and compensated to achieve high image quality. Patient motion
results in a misalignment of the geometry and the acquired image data.
Consistency measures can be used to restore the correct mapping to
compensate the motion. They describe constraints on an idealized imag-
ing process which makes them also sensitive to beam hardening, scatter,
truncation or overexposure. We propose a probabilistic approach based
on the Student’s t-distribution to model image artifacts that affect the
consistency measure without sourcing from motion.

1 Introduction

Modern C-arm systems enable 3-D imaging of the head in an interventional envi-
ronment. This is of high relevance in neuroradiology, where a 3-D reconstruction
allows to distinguish an ischemic from hemorrhagic stroke. The patients benefit
from reduced time-to-therapy [1] but the open gantry system and the interven-
tional setting constrain the acquisition speed compared to conventional Com-
puted Tomography (CT). With prolonged scan time, involuntary movements of
patients constitute a major challenge for high quality image reconstruction.

This gives rise to a strong need for motion compensation algorithms [2]. In
recent years, consistency conditions have been shown to be promising in this
context [3,4]. Besides the compensation of motion, consistency measures are
heavily used in cone-beam CT, as they provide a mathematical model constrain-
ing the imaging process. The most commonly applied consistency measure uses
Grangeat’s theorem to judge the pairwise consistency of two projections.

The measure was successfully applied for the correction of a variety of ac-
quisition artifacts. Beam hardening can be corrected by projection linearization
using a polynomial model. The parameters for the model are found by optimizing
for Grangeat’s consistency [5,6]. Hoffmann et al. used Grangeat’s consistency to
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estimate parameters of an additive scatter model [7]. The consistency measure
can also be used to estimate missing data due to truncation for field of view
reconstruction [8] and possibly to the closely related problem of overexposure
correction [9]. The most widely use of Grangeat’s consistency is the estimation
of geometry information that is distorted either due to rigid patient motion or
geometry jitter [3,4,10]. The reason for its wide applicability is the sensitivity
of the consistency measure to a variety of image artifacts. Thus, when we use
the consistency measure to compensate for motion, we also measure the incon-
sistency induced by other sources. In this work, we propose to use a statistical
model to handle inconsistencies that are not originating from motion artifacts.

2 CIV Look-Up-Table

In cone-beam imaging, a line profile l on the detector plane is created by attenu-
ated X-ray beams within a plane p connecting the X-ray source and l. Grangeat’s
theorem describes a transformation, to find a common value — we denote it as
Consistency Intermediate Value (CIV) — that can be computed either from
l, or the 3-D Radon value indexed by p [11]. Formally, the derivative of the
3-D Radon value in the normal direction of p equals a transformed value of l.
As a consequence, any pair of epipolar lines can be used as a consistency mea-
sure by computing their respective CIVs, which must be equal. All CIVs can be
precomputed as a look-up-table (LUT) by a concatenation of cosine-weighting,
Radon transform and derivative. As a result, from each projection we obtain a
CIV look-up-table as depicted in Fig. 1.

Fig. 1. LUT of two projections containing CIVs and corresponding lines visualizing the
sampling of redundancies based on the given geometry information. The CIVs along
corresponding lines in the left and right LUT, e.g. along the dotted lines ( ), should
be equal (see Fig. 2 for a visualization of line profile). True geometry: dotted ( ),
z translation: dashed ( ), x rotation: chain ( ) and y translation: solid ( ).
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Using the geometry information, we can sample CIVs [11] as visualized in
Fig. 1. Here, the dark blue dotted line corresponds to a correct sampling, where
the geometry information is consistent with the acquired projection data. The
profile of the sampled line is shown in Fig. 2. If the geometry information is
corrupted then the sampling pattern changes, as visualized by the solid line in
Fig. 1. The corresponding sampling profile is shown in Fig. 2. Due to the misalign-
ment, the profiles sampled from both LUTs, corresponding to two projections,
do not match anymore. This is used to restore the correct geometry by minimiz-
ing the difference between two profiles and in turn maximizing the consistency.
However, the profiles of two projections with perfect geometry will not match
exactly (cf. Fig. 2), because other acquisition artifacts reduce the consistency. We
propose to model these artifacts using a probabilistic approach.

0 200 400 600 800 1000 1200 1400

Epipolar Line Count κ

−40

−30

−20

−10

0

10

C
on

si
te

n
cy

M
ea

su
re
S

(h
(κ

))

CIV Profile of Projection a

CIV Profile of Projection b

CIV Profile of Projection a with Motion

CIV Profile of Projection b with Motion

Fig. 2. Profiles along the LUTs for correct and motion-affected geometry. The profiles
are sampled along the true geometry and the geometry affected by a translation in y
direction as depicted in Fig. 1.

3 Student’s t-Distribution-based Maximum Likelihood
Estimation for Consistency Optimization

Instead of assuming two CIVs to be equal, we propose a Bayesian description
of the matching problem. We assume that the sampled CIV of projection a is a
random variable x, distributed according to a Student’s t-distribution with mean
µ, variance σ and a shape factor ν

p(x|µ, σ, ν) =
Γ (ν+1

2 )
√
ν π Γ (ν2 )σ

(
1 +

(x− µ)2

ν σ2

)− ν+1
2

, (1)

where Γ is the gamma function. We use a t-distribution, because it can model our
inherently outlier-affected sampling process (cf. Fig. 3). We assume that the mean
of the random variable is the CIV of our second projection image b described
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by Sb(h(κ)). Here Sb is the LUT generated from projection b, and h(·) defines a
function that maps an angle κ to a corresponding value in the LUTs as displayed
in Fig. 1. A detailed explanation on the function h(·) can be found in [11].

The motion compensation can then be formulated by finding the parameters
of a probability density function that results in the greatest likelihood, or alter-
natively minimizing the negative log-likelihood. By setting the random variable
x as Sa(h(κ)) the maximum likelihood is defined by

min
∑
κ

− ln (p(x|µ, σ, ν)) = min
∑
κ

ν + 1

2
ln

(
1 +

(Sa (h(κ))− Sb (h(κ)))
2

ν σ2

)
.

(2)
For similar objects (e.g. head) and a given system, the distribution will always
be similar. Thus, the unknown parameters ν and σ can be estimated from a
motion free prior scan (not identical to the scanned object) by accumulating the
distances within the CIVs given by

∑
κ Sa(h(κ)) − Sb(h(κ)). In a second step

we fit a Student’s t-distribution to the data. This is depicted in Fig. 3, where we
can see that the t-distribution properly fits to the data: outliers are modeled by
its approximately constant tails. For comparison, fitting a Gaussian distribution
leads to a very high standard deviation (σ = 29) due to the outliers.

4 Experiments and Results

Experimental Setup: To evaluate our method, we compare our norm, derived as
the log-likelihood of a Student’s t-distribution (σ = 0.398, ν = 0.8228) with the
L2 norm, which is the log-likelihood assuming a Gaussian distribution and the
more robust L1 norm. We apply them for the compensation of axial motion (z)
modeled with splines. Thus, each projection is shifted in the z direction by the
amount of the spline at that projection index. The spline shape is controlled
by 12 nodes, whose values are determined randomly in the range of ±0.5 mm.
We use z-motion, because z-translations produce inconsistencies. In contrast,
motions within the acquisition plane do not necessarily violate the consistency
measure [3,4]. We show our results on three phantoms (cf. Fig. 4), acquired with
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Fig. 3. Histogram of distances between corresponding CIVs from two projections
(cf. Fig. 2) and fitted probability density functions.
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Table 1. Mean distance [mm] between estimated and ground truth motion curves.

Dataset a Dataset b Dataset c

Proposed 0.00567 0.00444 0.00477

L1 0.01521 0.01579 0.00772

L2 0.50440 0.61670 0.42677

a robotic C-arm system (Artis zeego, Siemens Healthcare GmbH, Germany).
Motion Compensation: We use a simplex method to find the motion-compensated
geometry. We iteratively optimize each node of a spline separately, assuming all
other spline nodes constant. For each dataset, we model a different motion tra-
jectory. The induced motion trajectory is displayed in Fig. 5 for all the three
datasets, with the estimated motion curves using the respective norms.
Results: The motion-estimated reconstruction using the proposed method is dis-
played in Fig. 4 together with the motion-affected reconstruction. The mean dis-
tance between the estimated and ground truth motion parameters are displayed
in Tab. 1. Using the proposed norm, we achieve the best results in restoring the
motion parameters. The second best estimation is achieved using the robust L1

norm. Using the L2 norm the consistency and the motion parameters can only
be poorly approximated. A visual inspection of the parameters is provided in
Fig. 5. The L2 norm especially fails to approximate the areas at the beginning
and end of the trajectory. The motion structure in the middle is approximated
in its structure, although, with a great offset.

5 Conclusion

We propose a statistical description for evaluating the consistency of a trajectory.
We model the consistency value as a Student’s t-distribution and find the optimal
geometry by minimizing the negative log-likelihood. Consequently, we derive a
robust norm for the comparison of consistency values, insensitive to outliers
which naturally arise due to physical effects. The proposed solution outperforms
the L1 and L2 norm. The L2 norm is very sensitive to outliers which pose it
improper. In the current approach, we fixed the parameters of the t-distribution.
Each projection pair reveals a different outlier-characteristic due to the scanned

a ã b b̃ c c̃

Fig. 4. Central slices of three reconstructed anthropomorphic head phantoms (HU
[-200,400]). Motion-compensated reconstruction using the proposed method (a,b,c) and
reconstruction with motion artifacts ranging from ±0.5 mm (ã,b̃,c̃).
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Fig. 5. Splines describing motion trajectory for datasets a (top), b (middle) and c (bot-
tom). Each subplot shows the ground truth motion trajectory ( ) and the estimated
trajectory using the proposed norm ( ), the L1 norm ( ) and the L2 norm ( ).

object. Thus, the precision might be enhanced by estimating projection pair
dependent parameters for the Student’s t-distribution.
Disclaimer: The concepts and information presented in this paper are based
on research and are not commercially available.
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