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Abstract
Purpose: For a perfectly plane symmetric object we can find two views — mir-
rored at the plane of symmetry — that will yield the exact same image of that
object. In consequence, having one image of a plane symmetric object and a cali-
brated camera, we automatically have a second, virtual image of that object if the
3-D location of the symmetry plane is known.
Methods: We propose a method for estimating the symmetry plane from a set of
projection images as the solution of a consistency maximization based on epipolar
consistency. With the known symmetry plane, we can exploit symmetry to esti-
mate in-plane motion by introducing the X-trajectory that can be acquired with a
conventional short scan trajectory by simply tilting the acquisition plane relative
to the plane of symmetry.
Results: We inspect the symmetry plane estimation on a real scan of an anthropo-
morphic human head phantom and show the robustness using a synthetic dataset.
Further, we demonstrate the advantage of the proposed method for estimating
in-plane motion using the acquired projection data.
Conclusion: Symmetry breakers in the human body are widely used for the de-
tection of tumors or strokes. We provide a fast estimation of the symmetry plane,
robust to outliers, by computing it directly from a set of projections. Further,
by coupling the symmetry prior with epipolar consistency we overcome inherent
limitations in the estimation of in-plane motion.
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1 Introduction

Symmetry is a powerful concept with applications ranging from art to physics
and mathematics [9,8]. This manuscript is concerned with symmetry in computer
vision where we consider a theoretically sound yet surprisingly little known prop-
erty of symmetric objects: when imaging a symmetric object using a calibrated
camera, knowledge of the 3-D symmetry plane yields a second, virtual camera
that corresponds to a mirrored version of the image seen by the true camera. This
circumstance enables metric 3-D stereo reconstruction of symmetric objects using
a single calibrated camera [27,10,11].

For the first time, Preuhs et al. [23] have demonstrated that the above prop-
erty naturally extends to transmission imaging, i. e. X-ray fluoroscopy, and devised
image-based algorithms that exploit this circumstance to estimate intra-scan mo-
tion in circular C-arm cone-beam computed tomography (CBCT). In CBCT imag-
ing, all camera positions are calibrated suggesting that a virtual source trajectory
becomes available once the 3-D symmetry plane is known. This paper is an ex-
tension of our prior work in Preuhs et al. [23] that provided a proof of concept
study.

Several methods have investigated the estimation of a bilateral symmetry, ei-
ther by finding a symmetry plane in 3-D or the symmetry axis on 2-D images.
A majority of these approaches formulate a similarity function between an orig-
inal image, and the mirrored version of that image [15,33,20,32]. The similarity
function is expected to be optimal, if the mirrored image is reflected at the true
symmetry axis or plane, respectively. This procedure can be viewed as an regis-
tration approach of the original and mirrored image [19]. Other approaches are
based on covariance matrices, whose eigenspaces must be invariant, if the model
is symmetric [21,30] or phase information based on Gabor wavelet [36]. All those
methods for symmetry plane detection rely either on 2-D information or 3-D infor-
mation, respectively and do not bridge the connection between a symmetric 3-D
object and its stack of 2-D transmission images.

We show that the 3-D symmetry plane can be estimated robustly in the pro-
jection domain and evaluate the robustness in dependence of a tilt between the
symmetry plane and the circular source trajectory. Symmetry planes are regularly
used for the detection of malformations, that are detectable as symmetry breakers
within the human body, e.g. for tumor detection or in perfusion imaging [8,17].
Therefore, the symmetry plane estimation must be robust to outliers. We show
the behavior of our algorithm in the presence of symmetry breakers.

Secondly we investigate the applicability of the symmetry prior for rigid mo-
tion estimation. Similar to state-of-the-art symmetry plane detection algorithm, a
first category of motion estimation frameworks follow an approach based on regis-
tration. Digitally rendered radiographs (DRR) of an 3-D reconstruction — either
obtained from an prior scan or as an motion affected intermediate reconstruc-
tion — are registered to the acquired projections based on a similarity metric [22,
3,7,31]. The motion trajectory is then found as the minimizer for the similarity
metric. This approach can be optimized by placing radio-oblique markers on the
object, however, at the cost of low contrast resolution and a cumbersome workload
for the clinicians [4].
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The second category optimizes an image quality metric (IQM) based on the
reconstruction [16,28,34]. In an autofocus framework, the motion trajectory is
found iteratively by optimizing for the IQM, e.g. entropy or total variation [34].

The third category, where our approach is classified, is based on enforcing cone-
beam consistency [12,5]. We investigate how the symmetry prior can be utilized
to estimate rigid patient motion using cone-beam consistency conditions and show
that incorporating the symmetry prior in epipolar consistency (EC) outperforms
conventional epipolar consistency (CEC) for in-plane motion estimation.

2 Methodology

2.1 Epipolar Consistency Conditions

Theory: An object acquired from two views reveals redundant low frequency in-
formation in both views. This property is well observable from the Fourier slice
theorem, where each cone beam projection samples a cone in the 3-D Fourier space
with the bottleneck incident to the origin. Grangeat’s theorem describes a measure
for redundancy based on the comparison of epipolar lines.

The theorem describes a transformation of epipolar lines to a value that is equal
to the derivative of the 3-D radon value w.r.t. the radon plane normal — incident
to corresponding epipolar plane — ∂

∂dRf(n, d), where n is the plane normal and
d denotes the plane offset. The transformation is a weighted integration along the
epipolar line direction followed by a derivative [6,2] and successive weighting. We
denote the transformation of an epipolar line on projection λ as intermediate value
Sλ(n) being defined by

Sλ(n) =

∫
S2

δ′(x>n)gλ(x)dx =
∂

∂d
Rf(n, d)|d=c>

λ n , (1)

where δ′(·) describes the derivative of the Dirac delta distribution, gλ(x) describes
a single value on the detector, cλ is the source position and x a vector from the
source to a detector pixel.

Any two source positions share a bundle of epipolar lines. As a consequence of
Eq. (1) any two corresponding epipolar lines share the same intermediate value.
Thus, a perfectly consistent scan must fulfill that

Sa(n) = Sb(n) ∀n ∈ S2 : c>b n = c>a n . (2)

Any inconsistencies violate Eq. (2) and in turn, the consistency of a scan can be
estimated by the distance of all corresponding intermediate values. To compare
them, we need a sampling strategy and an appropriate distance measure.

Sampling Strategy: The intermediate values of a single projection can be pre-
computed as a look-up-table (LUT) from the cosine weighted projection data g̃λ
as

Sλ(s, ϑ) =
s2 +D2

D2

∂

∂s
Rg̃λ(s, ϑ) , (3)

where s and ϑ describe the offset and angle of line parameterizing the 2-D radon
transform and D describes the source-detector-distance. The sampling strategy
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then identifies the corresponding points in the LUT, referring the corresponding
epipolar lines, that must match given the geometry information. We use projec-
tion matrices to describe the intrinsic and extrinsic parameters of a projection
Pλ ∈ R3×4. The epipolar lines can be constructed by a pair of projection matrices
Pa,Pb. In a first step, a line connecting the two source positions is found. Around
this line, a plane parameterized by an angle ν is rotated. Due to the construc-
tion each rotated plane represents an epipolar plane and the respective epipolar
lines on each detector are obtained by the projection of the epipolar plane on the
detector [24]. As a result, for each detector we obtain the offset and angle of an
epipolar line, which can be mapped to the respective s and ϑ values of the LUT.
We denote this mapping as sνPaPb and ϑνPaPb . This describes the s and ϑ values
of the epipolar line on detector a corresponding to the epipolar plane parameter-
ized by ν. The respective epipolar line on detector b is described by the mapping
sνPbPa and ϑνPbPa . A bundle of epipolar lines will then sample a line on the LUT.
The whole process from two projection images to sampled consistency values is
depicted in Fig. 1.

Distance Measure: The sampling process gives us two lines profiles, sampled from
the LUT (cf. right plot of Fig. 1). Ideally these profiles would be identical and
imaging defects, such as motion, beam hardening or scatter [35,14,1] are identi-
fiable by unmatching line profiles. As the consistency measure is sensitive to any
form of physical deviation from an idealized monochromatic X-ray transform [25],
we use a weighted version of the robust German-McClure distance measure intro-
ducing a cutoff value σ, that we set empirically to 0.25. Based on Eq. (4) we define
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Fig. 1: Flowchart describing the generation of the LUT to pre-compute the inter-
mediate values and the corresponding sampling scheme (weightings are omitted).
First, the radon transform of a projection image is computed. Then, the radon im-
age is differentiated in horizontal (s) direction using central differences. With the
geometry information contained in Pa,Pb the respective consistency values are
sampled. The profiles sampled from the respective projections can be compared to
calculate the consistency. Note that for motion compensation, only the sampling
process changes as the geometry — i.e. the projection matrices — is modulated
while the LUT remains static.
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our consistency measure as

ECC(Pa,Pb) =
∑
ν

(Sa(sνPaPb , ϑ
ν
PaPb)− Sb(s

ν
PbPa , ϑ

ν
PbPa))2

1 + 1
σ (Sa(sνPaPb , ϑ

ν
PaPb

)− Sb(sνPbPa , ϑ
ν
PbPa

))2
. (4)

Any isometric transformation — e.g. direct isometries as rigid transformations or
opposite isometries as reflections — can be incorporated in the projection matri-
ces by a right-multiplication of the respective transformation matrix. This can be
utilized to find a projection-wise rigid transformation that minimizes the incon-
sistency to estimate rigid patient motion [23,12].

In-plane and Out-plane Parameters for Motion Estimation: A common strategy
to estimate the patient motion is by minimizing Eq. (4) for all projection matrices
of the acquired scan. Therefore, the estimated patient motion is described by a
series of isometric translations T = [T1, . . .TN ] where N is the number of acquired
projections. This allows to define a motion state Tλ for each projection Pλ with
Tλ incorporating the rotation around the three coordinate axes rx, ry, rz and the
translation along them tx, ty, tz.

EC utilizes line integrals along epipolar lines to evaluate the consistency of two
projections. Due to this integration, motion in the direction of epipolar lines is not
detectable by this measure, as an integral over functions with compact support
is shift invariant if the integration range is sufficient. As a consequence, motion
estimation is split in two parameter categories: in-plane and out-plane parameters.
In-plane parameters are motion directions within the plane of acquisition and out-
plane parameters refer to the motions stepping out of the acquisition plane. State
of the art short scan CBCT imaging protocols acquire 496 projections along an
arc with a 200◦ coverage. Typically the tz axis defines the normal of the acquisi-
tion plane incident to the acquired arc. Thus, the in-plane motion parameters are
tx, ty, rz and the out-plane motion parameters tz, rx, ry. With the epipolar lines
being mostly horizontal in a circular trajectory, in-plane motion is in the direction
of epipolar lines. Consequently, in-plane motion is poorly estimated. In contrast,
out-plane motion is well detectable [23] as such movement is mostly horizontal to
the epipolar lines. By utilizing the symmetry prior, this categorization in out-plane
and in-plane parameters can be broken by introducing X-shaped epipolar lines.

2.2 Symmetric View Augmentation

Given a photograph of a plane symmetric object, one can find a second view of that
object revealing the same image, flipped at the vertical axis. Alternatively, a single
photograph can be assigned to be acquired from two distinct views. This prop-
erty extends to transmission imaging and allows the assignment of two projection
matrices to one acquired image.

Symmetry in Transmission Imaging: We use the projective space P for the follow-
ing calculations. The projective space allows for a compact definition of geometric
transformations solely based on matrix multiplications and is commonly used for
the definition of projection matrices [13,29,26]. The projective space Pn can be
thought as an extension of the Euclidean space Rn by a hyperplane at infinity. For
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Fig. 2: Visualization of a plane symmetric scene.

the case n = 3 this would be a plane at infinity. This is achieved by introducing
an additional homogeneous coordinate w. Points at infinity are then described by
w = 0. Other than points at infinity, a point defined in Pn can be mapped to
its Euclidean counterpart in Rn by removing the homogeneous component, and
dividing all remaining coordinates by w.

Two points xa ∈ P3 and xb ∈ P3 reveal a plane symmetry if they can be
mapped to each other by an involutive isometric transformation F. Given a simple
scene as depicted in Fig. 2 where the symmetry plane is incident to the x − z
axis, the transformation matrix only flips the sign of the y component of xa or
xb, respectively. They are related by xa = F xb and xb = F xa. We see that the
application of F twice results in the identity FF = 1.

The projection ua and ub of xa and xb is found by ua = Pxa and ub = Pxb.
If we mirror the scene, we will project Fxb and Fxa instead of xa and xb which
directly gives us the transformed projection geometry as

Pmirr = PF , (5)

resulting in u′a = PFxa and u′b = PFxb. Note, that from a calculus point of view,
it does not matter whether we shift the scene, or the projection geometry. With
Fxa = xb and Fxb = xa the resulting projection image will be identical, or stated
inversely: one projection image can be assumed to be acquired with P or Pmirr.

To estimate a symmetry plane, located arbitrarily in space, we need to find the
transformation operation for the involutive mapping. Assume two plane symmetric
points x′a and x′b, that are the transformed points xa and xb under the isometric
mapping T, given as

x′a = Txa ⇔ xa = T−1x′a x′b = Txb ⇔ xb = T−1x′b . (6)

They are connected by x′b = F′x′a, with F′ being the transformed involutive
mapping we seek to derive. Utilizing the fundamental relationship of symmetry
Fxa = xb and replacing xa and xb using Eq. (6) gives

FT−1x′a = T−1x′b −→ x′b = TFT−1x′a , (7)
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from which we can conclude the transformation rule given as

F′ = TFT−1 . (8)

Since we are basically transforming a plane incident to the x − z plane, we can
further restrict the isometric mapping T to three degrees of freedom, a rotation
around the z axis α followed by a rotation around the x axis β and an offset in the
normal direction of the plane d. This gives a general formulation of the involution
defined by

F(α, β, d) = Tα,β,d F T−1
α,β,d =

cosα − sinα cosβ sinα sinβ d sinα cosβ
sinα cosα cosβ − sinβ cosα d cosα cosβ

0 sinβ cosβ d− sinβ
0 0 1 1




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




cosβ sinα 0 −d sinα
− sinα cosβ cosα cosβ sinβ −d cosα cosβ
sinα cosβ − sinβ cosα cosβ d sinβ cosα

0 0 0 1

 . (9)

Symmetry Plane Estimation: The consistency measure is computed from a pair of
projection matrices and the projection raw data (cf. Sec. 2.1). As we showed in the
previous paragraph, the key concept is the assignment of a second mirrored geom-
etry to each projection. Therefore, we can use EC (cf. Eq. (4)) to find an involutive
transformation of the projections, representing the most consistent mapping

N∑
a,b=1

ECC(PaF(α, β, d),Pb) , (10)

which is by definition the reflection at the symmetry plane. This is achieved by
minimizing Eq. (10), assuming that within each pair of projection a, b ∈ N projec-
tion a is mirrored. Note that the LUT remains the same. The plane parameters
α, β and d are found as the solution of the consistency minimization problem

(α̂, β̂, d̂)> = arg min(α,β,d)>

N∑
a,b=1

ECC(PaF(α, β, d),Pb) . (11)

The X-Trajectory: An inherent challenge for EC for short scans are the hori-
zontal epipolar lines and the resulting splitting in out-plane directions, that are
well detectable, and in-plane directions, that are not detectable robustly. The X-
trajectory in the combination with the symmetry prior overcomes this challenge.
The X-trajectory can be acquired with a conventional CBCT system by placing
the symmetric object such that the symmetry plane is oblique to the trajectory
plane as visualized in Fig. 3. We denote the tilt of the symmetry plane κ, and
with an adequate κ the epipolar lines will form an X-shaped pattern due to the
dual geometric interpretability of each projection. If the tilt is great enough such
that the whole object can be placed below the first and above the last projection
while not being truncated axially, the scan will be data complete as it fulfills Tuy’s
condition.
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Fig. 3: Visualization of the X-trajectory with tilt angle κ. The acquired trajectory
is embedded in the blue trajectory plane (gray dots) and the mirrored virtual
trajectory is embedded in the gray trajectory plane (blue dots).

3 Experiments

3.1 Datasets

We acquired short scans of two anthropomorphic human head phantoms on a
robotic C-arm system (Artis zeego, Siemens Healthcare GmbH, Germany). The
first phantom is denoted as phantom A, and the second as phantom B. We further
processed phantom A, such that it is perfectly symmetric. To this end, we first
performed a reconstruction and then symmetrized the volume. In a second step
we simulate DRRs of the symmetrized head phantom using CONRAD [18]. As
a consequence, we know the ground truth symmetry plane of the phantom. A
reconstruction of the aligned symmetrized phantom A is depicted in Fig. 4a and
four DRRs are shown in Fig. 4b. We generated DRRs of the symmetrized phantom
A with five tilt angles: 0◦, 10◦, 20◦, 30◦ and 45◦.

(a) (b) (c) (d)

Fig. 4: Visualization of acquired datasets. (a): Slice through the symmetrized phan-
tom A, (b): digitally rendered radiographs (DRR) of the symmetrized phantom
A, (c): aligned reconstruction of anthropomorphic head phantom B, (d): raw pro-
jection data from a short scan of the anthropomorphic head phantom B.
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To further validate the presented method on real data — inherently incorpo-
rating physical artifacts — we use the raw projection data from phantom B. As
expected in a real clinical scenario, the head phantom does not exhibit a perfect
plane symmetry. The dataset was acquired three times with varying positioning
on the scanner. We arrange the phantom such that different tilt angles of the sym-
metry plane and the trajectory plane are achieved. An aligned reconstruction slice
of phantom B is given in Fig. 4c and raw projections from the scan revealing a tilt
angle are depicted in Fig. 4d.

3.2 Estimation of Symmetry Plane

Equation (10) defines the consistency of a scan w.r.t. the symmetry plane param-
eters β, α and d based on the projection raw data only. We find the symmetry
plane, by solving the optimizing problem defined by Eq. (11) using the Nelder-
Mead method. The optimization is initialized based on the anterior-to-posterior
projection (e.g. as depicted in the upper right of Fig. 4b). The relative position of
this projection is used to initialize α (in our experiments always 90◦), whereas the
approximate tilt of the head initializes β. The offset parameter is initialized to be
d = 0. The estimated symmetry plane parameters for dataset B are displayed in
Tab. 1. Since we have created the symmetry of dataset A synthetically we do not
need to estimate it beforehand.

Symmetry Plane Computation as a Function of Tilt Angle: We inspect the be-
havior of our cost function near the optimum solution in dependence of the tilt
angle κ. For the real projection data, we use the plane parameters estimated us-
ing the Nelder-Mead method (cf. Tab. 1) as optimal plane parameters and for the
symmetrized head phantom we use the respective ground truth plane parameters.
By construction we choose them to be β = 0, α = 0, d = 0. Instead of moving the
dataset, we use a rotated trajectory to generate the desired tilt angles.

Starting from the optimal solution we then modulate a single plane parameter,
while keeping the other two parameters fixed. For each modulation we evaluate
the consistency defined by Eq. (10).

Outlier Robustness of Symmetry Plane Estimation In a real clinical environment,
symmetry breakers are common. The patient might suffer from lateral stroke or
tumors. Further, dental implants or surgical tools can be present. This experiment
inspects the robustness of the symmetry plane w.r.t. locally restricted symmetry
breakers. As we only want to inspect the sole dependence on the symmetry break-
ers we use a symmetrized version of phantom B. To this end, we reconstruct the
dataset with the FDK algorithm and mirror the reconstruction at the estimated
symmetry plane (cf. Tab. 1). We use the clinically most relevant case with κ ≈ 2◦.
In a second step we place a 3-D ellipse in the reconstruction, simulating a specific
symmetry breaker. We simulated a hemorrhagic stroke, a dental implant and two
surgical tools. The surgical tools only differ in the HU offsets. The ellipse volume,
together with the applied HU offset is documented in Tab. 2 and a slice of the re-
constructed volume showing the respective symmetry breaker is depicted in Fig. 5.
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Fig. 5: Reconstruction slices of symmetrized phantom B with induced symmetry
breakers. Left: lateral hemorrhagic stroke with 90 HU offset (HU [800-1300]), mid-
dle: dental implant with 2000 HU offset (HU [500-3700]), right: surgical tool with
12000 HU offset (HU [800-1300]).

3.3 Application to Rigid Motion

With conventional epipolar consistency (CEC) [12,24,25,2] inherent limitations
reduce the robustness of in-plane motion estimation (cf. Sec. 2.1) due to the for-
mation of mostly horizontal epipolar lines. Based on Eq. (4) the CEC of two views
is defined as

CEC(PaTa,PbTb) := ECC(PaTa,PbTb) , (12)

with Tλ denoting the motion state of projection Pλ as introduced in Sec. 2.1.
Utilizing the X-trajectory with adequate tilt κ we achieve X-shaped epipolar

lines allowing a more robust estimation of in-plane parameters. We denote the con-
sistency incorporating the symmetry plane mirrored epipolar consistency (MEC)
being defined by

MEC(PaF(α, β, d)Ta,PbTb) := ECC(PaF(α, β, d)Ta,PbTb) . (13)

To validate the impact of the symmetry prior we perform a motion analysis
using the acquired projection data of the anthropomorphic human head phantom
(phantom B). To inspect the dependency of the tilt, we used the scans acquired
with a tilt angle κ ≈ 2◦ and κ ≈ 37◦. We use the symmetry plane, as estimated
by the Nelder-Mead method (cf. Tab. 1). For each motion direction of the motion
vector mλ = (tλx, t

λ
y , t

λ
z , r

λ
x , r

λ
y , r

λ
z ) we optimize one projection, while keeping all

others fixed. This is performed using MEC and CEC, respectively. Thus, for each
motion direction mλ

k with k ∈ {1, 2 · · · 6} and each projection λ of the trajectory
we evaluate

m̂λ
k = arg minmλ

k

N∑
a,b=1

CEC(PaTa(ma
k),PbTb(m

b
k)) (14)

m̂λ
k = arg minmλ

k

N∑
a,b=1

MEC(PaF(α, β, d)Ta(ma
k),PbTb(m

b
k)) , (15)

with Tλ(mλ
k) being the transformation matrix, performing a transformation of

projection Pλ by mλ
k . Note that in Eq. (14) and Eq. (15) all Ti(m

i
k) with i 6= λ
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Table 1: Estimated symmetry plane parameters for the three acquired short scans
of phantom B. In the text, we refer to the respective scan using the approximate
tilt angle 2◦, 22◦ and 37◦, respectively.

Dataset Tilt Angle κ [◦] β [◦] α [◦] d [mm]
B 2.4938 ≈ 2 2.4938 84.5757 3.9529
B 22.2612 ≈ 22 22.2612 81.3196 6.7057
B 37.3278 ≈ 37 37.3278 83.0196 6.6659

are the identity. This gives for CEC and MEC, respectively a line profile for each
motion direction, dataset and tilt angle κ which are depicted in Fig. 8 and Fig. 9.
The x-axis of the line profile is the projection number λ and the y-axis denotes the
deviation from the ground truth mλ

k , either defined by CEC or MEC. Note that we
optimize the consistency on a motion free trajectory. Therefore, an ideal motion
measure would not alter the trajectory. However, by inspecting the behavior on a
motion free trajectory we obtain a good insight on the expected precision.

4 Results and Discussion

4.1 Estimation of Symmetry Plane

Symmetry Plane as a Function of Tilt Angle: The symmetry plane estimation near
the optimum is shown in Fig. 6 for the synthetic data (Phantom A) and in Fig. 7
for the real data (Phantom B). Each figure consists of three subplots, with the
upper plot showing the results for the offset parameter d, the middle plot showing
the β results and the bottom plot depicts the results for the α parameters. Both,
the synthetic and real data, show that the symmetry plane is well defined using
the applied consistency measure independent of the tilt angle. However, with a
steeper tilt angle, the minimum of the offset parameter is much sharper and in
the consequence more stable. For the real data, a steeper tilt angle also results in
sharper minima for the β and α parameters.

Near a β offset of −25◦ the phantom reveals a light symmetry, resulting in
a local minimum. Such local minima and maxima provide information about the
capture range, e.g. β must be initialized within a range of ≈ ±12◦ deviation from
the ground truth, whereas d has a high capture range of ≈ ±50 mm.

Outlier Robustness of Symmetry Plane Estimation: The estimated symmetry plane
parameters with simulated symmetry-breakers are listed in Tab. 2 together with a
reference estimation, giving the ground truth. The stronger the symmetry breaker,
the more inconsistency is induced. However, due to the robust norm, the consis-
tency differences of the surgical tool with 6000 and 12000 HU differences induce
a similar inconsistency. The symmetry plane estimation is merely affected by the
symmetry breakers. In all cases the estimated parameters reveal a maximum error
of 0.16◦ and less then 0.04 mm.
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Fig. 6: Obtained consistency w.r.t. a deviation from the optimal symmetry plane
parameter and tilt angle κ using the symmetrized phantom A. Top: consistency de-
pendent on deviation by an offset d from optimum. Middle: consistency dependent
on a β rotation. Bottom: consistency dependent on a α rotation.

Table 2: Estimated symmetry plane parameters in the presence of outliers.

Symmetry
Breaker

HU Diff.
[HU]

Vol.
[mm3]

β [◦] α [◦] d [mm] EC [a.u.]

None 0 0 2.4151 84.7220 3.9805 30.7520
Stroke 90 282.74 2.4576 84.5661 3.9421 36.9024
Dental Implant 2000 70.69 2.4846 84.5805 3.9481 73.8048
Surgical Tool 6000 2827.43 2.4891 84.5748 3.9532 84.8755
Surgical Tool 12000 2827.43 2.4869 84.6026 3.9641 86.1056

4.2 Application to Rigid Motion

We cluster the results of the experiments as explained in Sec. 3.3 for out-plane
motions (cf. Fig. 9) and in-plane motions (cf. Fig. 8). Note that in our experiment
for every projection λ the consistency is optimized by changing a single motion
parameter only affecting the projection number λ. Each optimization is initial-
ized with the motion free trajectory, therefore the deviation in projection λ = i is
independent on the deviation in projection λ = j (i 6= j). As expected and previ-
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ously reported in [12,24], the in-plane motions are not robustly estimated by CEC,
whereas the out-plane motion is much more accurate. In contrast, the proposed
method is more accurate in most areas then CEC if an sufficient tilt angle κ is
chosen (cf. Fig. 8). However, MEC reveals a high deviation from the ground truth
in the mid trajectory, where the central ray of the projections is almost parallel to
the symmetry plane. We expect, that in these areas the mirroring of projections
is ill conditioned, especially in the presence of an imperfect symmetry.

For the out-plane parameters the CEC is already accurate and the proposed
method has only few segments where it slightly performs better the CEC. The
MEC reveals again an offset at the projections near the symmetry plane. Especially
for the tz translation, the CEC is more accurate. In general our proposed MEC
outperforms CEC on the in-plane parameters, whereas CEC is superior for out-
plane parameters.

Numeric evaluations of the curves are documented in Tab. 3. Note that the pre-
sented values are an average over the whole trajectory and only provide a rough
impression. MEC is strongly view dependent, and displays high inaccuracies near
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Fig. 8: Motion analysis for in-plane parameters. Each subplot shows the perfor-
mance of the proposed method (MEC) and the conventional EC (CEC) with a
tilt angle κ = 2◦ and κ = 37◦, respectively. Top: in dependence of rx, mid: in
dependence of ry, bottom: in dependence of tz.

the symmetry plane, while being accurate in the first part of the trajectory. This
behavior is not captured by the mean or standard deviation. However, Tab. 3 sup-
ports our visual inspection, that out-plane parameters are already well estimated
by CEC, and the in-plane estimation is improved by MEC, given a tilt angle
κ = 37◦.

Another interesting result is the strong object dependency of the CEC. To our
knowledge, this behavior was not reported in the literature so far. It is observable
in all plots, that the CEC behaves differently depending on the placement of the
phantom in the scanner, i.e. the tilt angle κ, also the numeric results clearly show
a significant change.

5 Conclusion and Outlook

We have presented the powerful concept of symmetry for transmission imaging
in combination with EC. By estimating the symmetry plane in the projection
domain our method is fast and independent of a fully sampled scan. A single



Symmetry Prior for Epipolar Consistency 15

−2.5

0.0

2.5 2◦ CEC

2◦ MEC

37◦ CEC

37◦ MEC

rx

−2.5

0.0

2.5

D
ev
ia
ti
o
n
fr
om

M
o
ti
on

-F
re
e
G
eo
m
et
ry

([
m
m
],
[◦
])

2◦ CEC

2◦ MEC

37◦ CEC

37◦ MEC

ry

0 100 200 300 400 500 600

Projection Number λ

−2.5

0.0

2.5 2◦ CEC

2◦ MEC

37◦ CEC

37◦ MEC

tz

Fig. 9: Motion analysis for out-plane parameters. Each subplot shows the perfor-
mance of the proposed method (MEC) and the conventional EC (CEC) with a
tilt angle κ = 2◦ and κ = 37◦, respectively. Top: in dependence of rx, mid: in
dependence of ry, bottom: in dependence of tz.

kernel call, evaluating once Eq. (10), takes about 50 ms on a mobile computer with
NVIDIA Quadro M2200. We have evaluated the proposed algorithm on a real scan
of an anthropomorphic head phantom. Despite being only partially symmetric,
the proposed concept of exploiting symmetry was still found applicable. On the
anthropomorphic phantom, the symmetry plane can be estimated robustly and we
have provided experiments allowing to conclude, that symmetry breakers merely
affect the symmetry plane estimation. While the overall inconsistency increases
proportional to the induced asymmetry, the minimum of the estimation does not
change. This is of high relevance when the method should be applied e.g. for tumor
or stroke detection, where symmetry breakers are used to identify abnormalities
[8].

We further provided promising results for in-plane motion compensation. EC
is known to be robust for out-plane motion detection (cf. Fig. 9), in-plane motion
is challenging. We showed that the symmetry prior (MEC) outperforms CEC in
most parts of the trajectory. A drawback of MEC is the location dependent per-
formance. Especially in the part of the trajectory near the symmetry plane the
motion estimation is inaccurate. As a consequence, highly sophisticated motion es-
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Table 3: Numeric evaluation of motion analysis. The mean error is documented
together with the mean value and standard deviation computed from each curve
depicted in Fig. 8 and Fig. 9. All values are in degree or mm, respectively.

Motion
Direc-
tion

Consis-
tency

κ=2◦

Mean
error

κ=2◦

Mean
κ=2◦

Std.
Dev.

κ=37◦

Mean
error

κ=37◦

mean
κ=37◦

Std.
Dev.

rz CEC 1.615 0.108 1.844 0.997 -0.186 1.246
rz MEC 2.156 -0.574 2.222 0.729 0.101 1.227
tx CEC 1.723 0.144 1.94 1.559 0.309 1.758
tx MEC 0.651 0.175 0.842 0.454 0.054 0.688
ty CEC 1.025 -0.025 1.313 0.592 -0.081 0.769
ty MEC 0.592 -0.21 0.8 0.487 0.293 0.789
rx CEC 0.219 -0.037 0.238 0.506 -0.087 0.758
rx MEC 0.357 0.097 0.609 0.482 0.173 0.922
ry CEC 0.788 -0.407 1.172 0.254 0.013 0.294
ry MEC 0.811 -0.146 1.156 0.18 0.046 0.307
tz CEC 0.08 0.014 0.103 0.111 -0.004 0.138
tz MEC 0.068 -0.001 0.088 0.155 0.051 0.245

timation strategies are necessary for the compensation, that only incorporate tra-
jectory segments that are highly reliable. For our experiments we only inspected
the symmetry prior. In a practical scenario, additional prior knowledge, e.g. a
smooth motion trajectory, can be incorporated into the objective function. This
constrained was shown to be highly beneficial by [28] in the context of autofocus,
but would translate seamlessly to consistency based algorithms.

For our motion experiments, we assumed the symmetry plane to be known.
This assumption might not hold in a clinical setting, especially in the presence of
motion. However, we have experienced, that two views can be sufficient for the
symmetry estimation using synthetic data. While the symmetry plane estimation
on real data needs sufficient views to work properly, an alternating approach, that
compensates for motion and finds the symmetry plane seems a promising solution.

We conclude that symmetry is a powerful concept in transmission imaging
with the potential to benefit diverse imaging problems that make use of consis-
tency condition such as, beam hardening- or truncation-correction. Beside motion
compensation, the most promising application is expected in the context of cali-
bration, where a calibration phantom with several symmetry planes could be used
to achieve a view-independent calibration performance.
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