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Roman Schaffert, Jian Wang, Peter Fischer, Andreas Maier, and Anja Borsdorf

Abstract—In minimally invasive procedures, the clinician relies
on image guidance to observe and navigate the operation site. In
order to show structures which are not visible in the live X-ray
images, such as vessels or planning annotations, X-ray images can
be augmented with pre-operatively acquired images. Accurate
image alignment is needed and can be provided by 2-D/3-D
registration. In this paper, a multi-view registration method based
on the point-to-plane correspondence model is proposed. The
correspondence model is extended to be independent of the used
camera coordinates and different multi-view registration schemes
are introduced and compared. Evaluation is performed for a
wide range of clinically relevant registration scenarios. We show
for different applications that registration using correspondences
from both views simultaneously provides accurate and robust
registration, while the performance of the other schemes varies
considerably. Our method also outperforms the state-of-the-art
method for cerebral angiography registration, achieving a cap-
ture range of 18 mm and an accuracy of 0.22±0.07 mm. Further-
more, investigations on the minimum angle between the views are
performed in order to provide accurate and robust registration,
while minimizing the obstruction to the clinical workflow. We
show that small angles around 30◦ are sufficient to provide
reliable registration results.

Index Terms—rigid 2-D/3-D registration, multi-view, point-to-
plane correspondence model, spine registration

I. INTRODUCTION

OVERLAYS of pre-operative 3-D images on
intra-operative 2-D fluoroscopy images are often

used in interventional radiology to provide guidance to the
physician. Typical use cases are displaying of anatomical
structures which are not visible in the fluoroscopy images
(e. g. blood vessels [1] or soft tissue such as the heart [2])
or markers defined before the intervention (e. g. bifurcation
points which must not be obstructed or screw placement
information for spine surgery). Furthermore, depth information
can be visualized in an intuitive manner [3]. An accurate
alignment of the images is crucial for the overlay. In order
to achieve a high accuracy, 2-D/3-D image registration
methods are employed to align the images with an estimated
transformation. The topic of 2-D/3-D registration has been
widely studied and a large number of methods were proposed.
For a comprehensive overview of 2-D/3-D registration, we
refer the reader to the overview by Markelj et al. [4] and
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for a more general overview of registration methods to
Liao et al. [5].

This paper focuses on intrinsic rigid 2-D/3-D registration.
This type of methods can be further categorized based on the
type of image information used for the registration and how the
dimensional correspondence between the 3-D and the 2-D im-
ages is established [4], [5]. More specifically, Markelj et al. [4]
suggest the division into feature-based, intensity-based and
gradient-based methods. While feature-based registration re-
lies on extracted features, intensity-based and gradient-based
registration is performed by defining and optimizing a similar-
ity measure based on the intensities or gradients of the images.
To obtain the dimensional correspondence of the input images,
either projection of the 3-D image, back-projection of the 2-D
image or a rough reconstruction in case of multiple 2-D images
can be used [4]. Gradient-based approaches were demonstrated
to have a high accuracy and enable X-ray to MR registra-
tion [6]–[8]. However, the robustness of gradient-based meth-
ods tends to be low [4] and a feature-based alignment is often
introduced as an initial step to improve the robustness [8], [9].
The most common approach to 2-D/3-D registration is the
combination of intensity-based registration and the projection
strategy [4]. Here, digitally reconstructed radiographs (DRRs)
are generated from the 3-D image and the similarity to the
2-D image is optimized, e. g. by Kubias et al. [10].

More recently, methods have been proposed which combine
the matching of local structures with maximizing a similarity
measure defined for the images. Mitrović et al. [11] propose
a method for registration of cerebral angiography data. They
extract centerline points together with the direction and radius
of the vessel. The centerline points are projected onto the
2-D image and a similarity is computed by matching vessel
orientations and the gradient orientation in neighborhoods
around the projected point in the 2-D image. A high robustness
of the method is demonstrated. Špiclin et al. [12] follow a more
general approach to incorporate the neighborhood structure
into the similarity estimation. Here, covariance matrices are
estimated for both images. The covariances from the 2-D im-
age are back-projected and compared to the 3-D covariances.
To enable fast registration, only regions with high gradients in
3-D are considered. This method achieves a high robustness
and is not limited to a specific use case.

The effect of the angle between the two views on the
registration accuracy is investigated by Uneri et al. [13]. The
authors demonstrate that relatively small angles around 20◦ are
enough to achieve an optimal accuracy, which is not further
improved for larger angles. However, a single initial position
is used and robustness is not evaluated.
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For multi-view registration, Kaiser et al. [14] propose a
scheme which relies on a centerline of the registered structure.
It allows to iteratively align the appearance of the object in one
view, while preserving the independent in-plane parameters
in the other view. The authors demonstrate faster and more
accurate registration of the transesophageal echocardiography
(TEE) probe compared to iterative in-plane registration in case
of non-orthogonal views.

A general approach to increase the robustness is to apply
a global optimization strategy when optimizing the similarity
measure. As this requires a high number of evaluations of
the similarity measure, different strategies for fast DRR gen-
eration have been investigated. Duménil et al. [15] propose
a decomposition of the motion allowing changes in the DRR
caused by translational and in-plane rotational motions to be
approximated as 2-D transformations. This enables an efficient
grid-search approach. Otake et al. [16] propose to use a
highly parallel approach to enable fast DRR generation in
combination with a multistart strategy and the CMA-ES [17]
as a local optimizer. While the authors report an impressive
capture range, the search space is adjusted to the expected
range of motion for the individual motion parameters in order
to limit the computational cost, allowing large motion mainly
for translations along the spine and out-of-plane translations.

Schmid et al. [18] use 3-D contour generator points [19],
i. e. points representing a contour in the projection of the
volume onto the image plane, as a basis for the registration.
Correspondences for these points in the 2-D X-ray image
are established by performing local patch matching between
a DRR and the X-ray image. A motion is computed based
on forces defined for the correspondences. The physics-based
motion estimation enables inter-object constraints between
multiple registered structures. To achieve a high accuracy, a
gradient-based similarity measure is optimized in a second
step. Similarly, Wang et al. [20] propose a method where
correspondences for contour generator points in the X-ray
image are established. Considering the fact that displacement
along a contour is hardly observable, the authors propose a
point-to-plane correspondence (PPC) model that takes the dis-
placements perpendicular to contours as input and efficiently
constrains both in-plane and out-of-plane 3D transformations.
A high robustness and accuracy is observed for the method
and no refinement step is needed. Furthermore, a parallel
implementation of the method on the GPU [21] enables
real-time tracking of the patient. However, the PPC model
is derived in the camera coordinate system and cannot be
directly used for multi-view registration. While a high 3-D
accuracy using single-view registration can be achieved [20],
single-view registration is generally considered as an ill-posed
problem [12] and is especially challenging, e. g. in case of
limited field of view or small structures.

In this work, we propose a view-independent extension
of the PPC model [20]. Considering the fact that distances
are invariant to rigid transformations, we reformulate the
PPC model to allow motion estimation directly in a chosen
coordinate system related to the camera coordinates by a rigid
transformation [22]. We propose to use the view-independent
PPC model to enable multi-view registration using correspon-

dences from all views [22]. Alternatively, the registration can
be obtained by performing a motion estimation step for each
view and iterate over the views. Another strategy is to perform
single-view registration for all views, select the most promis-
ing results and refine the out-of-plane parameters using the
other view(s) [22]. We compare our proposed method to these
strategies. Regularized motion estimation, which has shown to
lead to increased robustness for single-view registration [23],
is further investigated as a means to increase robustness. We
evaluate the different approaches on a diverse set of animal
and clinical data. To minimize the obstruction of the clinical
workflow, a small angle between the views is desirable. We
investigate the effect of the angular distance of the used views
in order to establish the minimal angle for accurate and robust
registration [22].

II. RELATED WORK

In this work, we extend the registration method described by
Wang et al. [20]. In the following section, we describe the PPC
model, as well as the PPC-based registration framework [20].

A. Point-To-Plane Correspondence Model

The PPC model is introduced for tracking of differential
motion [24] and was shown to achieve a high accuracy as
well as robustness for single-view 2-D/3-D registration [20].
The idea behind the PPC model is to measure the local
misalignment between a 2-D X-ray image IFL and a 3-D
volume V and to estimate a 3-D rigid motion to compensate
for it. As contours of high-contrast structures, e. g. bones, are
well distinguishable in IFL, they are used as the basis for the
misalignment estimation.

In the volume V , the surface of high-contrast structures is
extracted and used as the basis for the registration. From the
surface, contour generator [19] points {wi ∈ R3} are selected,
i. e. a set of points wi representing the apparent contour in
the projection of V under an initial registration transformation
Tinit ∈ R4×4 and the given projection geometry. The PPC
model is defined in the camera coordinate system C.

The points {wi} are projected onto a normalized image
plane parallel to the detector and with a distance of 1 to
the source, yielding a set of projected points {pi ∈ R3}.
The local misalignment is measured for all {pi} by finding
correspondences {p′i ∈ R3} in IFL. Following the assump-
tion that displacements along the contour cannot be detected
locally, only motion perpendicular to the contour, i. e. along
the contour normal, is considered. For a contour point pi, the
normal corresponds to the projection of the intensity gradient
gi at V (wi) onto the image plane. The correspondence p′i is
searched along this direction only.

After the correspondences are established, the motion of wi

is still not known in two directions: along the back-projection
ray of p′i and along the contour. As the contour is perpendic-
ular to the gradient gi as well as the viewing ray through wi,
the contour direction can be expressed as wi× gi. Therefore,
we can only say that the point is located on a plane Πi with
a normal ni ∈ R3 spanned by these two directions, i. e.

ni = (wi × gi)× p′i . (1)
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To achieve local alignment, the point wi has to be located
on the corresponding plane Πi, i. e.

dist(Πi,wi + dwi) = 0 , (2)

where dist(·, ·) indicates point-to-plane distance and dwi is
the displacement of wi. As Πi contains the back-projection
of p′ and passes trough the origin, Eq. (2) can be expressed
as

nᵀ
i (wi + dwi) = 0 . (3)

In case of rigid registration, all points are displaced ac-
cording to a global transformation consisting of a transla-
tion and a rotation of V . The global motion is denoted as
δv = (δωᵀ, δνᵀ)ᵀ, where δω ∈ R3 is the rotational motion
component in the axis-angle representation and δν ∈ R3 is
the translational component.

The PPC model was originally developed for the tracking
case and a small amount of motion is assumed [24]. Using the
Rodrigues rotation formula and the small angle assumption,
the displacements of the individual points can be expressed
linearly in the motion vector as

dwi = δω ×wi + δν . (4)

Using this simplified relation, Eq. (3) is reformulated as(
(ni ×wi)

ᵀ, −nᵀ
i

)
δv = nᵀ

iwi . (5)

To estimate the motion, the overall point-to-plane distance over
all correspondences is minimized, i. e. Aδv = b is solved.
Every correspondence contributes one row to A ∈ RN×6 as
aᵀi =

(
(ni ×wi)

ᵀ, −nᵀ
i

)
and one element to b ∈ RN as

bi = nᵀ
iwi, where N is the number of correspondences.

B. Single-View Registration Method

In this section, we describe the registration method which
uses the PPC model and can be used for initial single-view
registration [20].

As a pre-processing step, a guided image filter [25] is
applied to V in order to reduce the noise. Then, surface
points are extracted from V using a 3-D Canny detector [26].
The actual registration is performed by iterating the following
steps.

1) Extraction of Apparent Contour Points: The apparent
contour points under the initial registration transformation
T init are selected using the perpendicularity condition [24].
For a point on the apparent contour, the surface normal (or
intensity gradient gi) and the viewing ray through wi are
perpendicular to each other. In practice, a perpendicularity
threshold is applied, i.e. ∠(gi,wi) ≥ tθ. The points fulfilling
this criterion are further considered as the apparent contour
point set {wi}.

2) Correspondence Estimation: After {wi} is extracted, a
correspondence for each wi in IFL is established using patch
matching. As a first step, V is uniformly divided into depth
intervals and a gradient projection image is computed for
every interval, leading to a set of depth layer images (DLs)
{∇Iproj

d }, where d indicates the depth interval index [27]. For
every projected point pi, a symmetric neighborhood with the

half size rΩ around the point is used from the corresponding
DL, denoted as Ω(∇Iproj

d ,p). Patch matching is performed
on candidate positions pc

i in a defined search range rs both
along the parallel and antiparallel direction of the image
gradient ∇Iproj

d (pi) using the normalized gradient correlation
(NGC) [28], i.e.

p′i = argmin
pc

i

NGC(Ω(∇Iproj
d ,pi),Ω(∇IFL,pc

i)) , (6)

where Ω(∇I,x) is a patch from the gradient image ∇I around
the position x. Note that the image gradient∇Iproj

d (pi) is used
instead of gi, as it is obtained from an integration along depth
and is more robust to noise [20]. Matches below a similarity
threshold tNGC are regarded as wrong and not considered for
the motion estimation.

3) Motion Estimation: In order to estimate the motion, the
optimization problem argmin ΣiL(aiδv−bi) is solved, where
L denotes the loss function. The normals ni are computed as

ni = (wi ×∇Iproj
d (pi))× p′i (7)

instead of Eq. (1), as the estimation of ∇Iproj
d (pi) is more

robust to noise and is also perpendicular to the contour [20]. To
achieve a high robustness of the motion estimation to outliers,
we follow Wang et al. [20] and use the maximum correntropy
criterion for regression (MCCR) [29] as the loss function
L. The optimization problem is solved using the iteratively
reweighted least squares (IRLS) scheme [30].

III. 2-D/3-D REGISTRATION USING VIEW-INDEPENDENT
POINT-TO-PLANE CORRESPONDENCE MODEL

The PPC model and the registration framework proposed
by Wang et al. [20] enable an accurate and robust single-view
registration. However, single-view registration is challenging
in some circumstances, e. g. with limited field-of-view. There-
fore, we investigate multi-view registration using the PPC
model. In the original formulation, the PPC model is defined
in the camera coordinates of a view and correspondences of
different views cannot be combined.

In this work, we reformulate the model in a coordinate
system D related to the camera coordinates Cv of a view v by
a rigid transformation in order to enable the simultaneous use
of correspondences from different views. We propose to use
correspondences from all views simultaneously and compare
the proposed method to alternative multi-view registration
schemes. Furthermore, we explore the effect of the angular
distance between the views on the registration performance as
well as the effect of regularized motion estimation. To enable
meaningful regularization, we use the view-independent PPC
model and move the origin to the center of the volume. This
enables rotations without displacing the object and therefore
no translations are needed to compensate this displacement.

A. View-Independent Point-To-Plane Correspondence Model

According to the PPC model, the motion is estimated by
minimizing point-to-plane distances (see Eq. (2)). In order to
obtain the extended, view-independent PPC model [22], we
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Fig. 1. Correspondences for two views. For the volume V , each view Cj and
the corresponding image IFL

j , one correspondence is shown (consisting of
point wj , projected point pj , found correspondence p′j and the corresponding
plane Πj ). The views are related to the coordinate system D by Dj .

make use of the fact that distances are invariant under rigid
transformations. Therefore, Eq. (2) can be reformulated as:

dist(Dv(Πi,v), Dv(wi,v) +Dv(dwi,v)) = 0 , (8)

where Dv(·) denotes a rigid transformation. For every view v,
a different Dv(·) is used so that Dv(·) transforms correspon-
dences related to the view Cv to a common coordinate system
D. Analogous to Eq. (3), Eq. (8) can be expressed as

Dv(ni,v)
ᵀ(Dv(wi,v) +Dv(dwi,v))−Dv(ni,v)

ᵀDv(0) = 0 ,
(9)

where Dv(0) is the origin of the camera coordinate system
Cv expressed in D. See Fig. 1 for an illustration of the
used coordinate systems and transformations. Note that the
transformed plane Dv(Πi,v) does not pass through the origin
of D and the distance to the origin is accounted for by
Dv(ni,v)

ᵀDv(0). The displacement of the point Dv(dwi,v)
is directly expressed in D depending on the motion estimated
in D. Analogous to Eq. (4), the displacement is expressed as

Dv(dwi,v) = dŵi,v = δω̂ ×Dv(wi,v) + δν̂ , (10)

where δv̂ =
(
δω̂ᵀ, δν̂ᵀ)ᵀ is the motion vector estimated in

D. Combining Eq. (9) and Eq. (10), we obtain(
(Dv(ni,v)×Dv(wi,v))

ᵀ, −Dv(ni,v)
ᵀ
)
δv̂ =

Dv(ni,v)
ᵀ(Dv(wi,v)−Dv(0)) , (11)

which can be used to estimate the motion directly in D.

B. Multi-View Registration Variants

In this section, the different multi-view registration schemes
are discussed. All methods use the view-independent PPC
model in order to center the registered object to the origin.

1) Registration Using Multiple Views (PPC-M): The
PPC-M method uses the view-independent PPC model in
order to allow for motion estimation using correspondences
from multiple views. All correspondences are combined into
a single system of equations and a motion δv̂ is computed
to align the object in all views simultaneously [22]. For an
illustration of the setup, see Fig. 1.

2) Registration Using View Selection (PPC-S): Another
approach to multi-view registration is to perform a single-view
registration for each view first. Then, the view which leads to
the best registration is selected. The corresponding registra-
tion is then refined by iteratively performing one registration
iteration for each view, restricting the motion in depth [22].

3) Alternating Registration (PPC-A): The last considered
variant is to alternate between views on every iteration. It is
not possible to estimate only the in-plane parameters for every
iteration, as one rotational component is out-of-plane for both
views. Instead, only motion in depth, i. e. along the viewing
direction, is not estimated.

For all methods, the origin of D is set to the center of the
registered structure.

C. Regularized Motion Estimation

The L2-regularized least squares solution is computed as

δv̂ = argmin
δv̂′

(
1

N
‖Aδv̂′ − b‖22 + λ‖δv̂′‖22) , (12)

where λ is the weight of the regularizer. For meaningful
regularization, the rotational and translational parameters have
to be made independent of each other. This is achieved
by centering the coordinate system, in which the motion is
estimated, to the center of the registered structure [22].

IV. IMPLEMENTATION DETAILS

In this section, essential implementation details of the used
registration method are discussed.

A. Correspondence Weighting

In order to increase the robustness of the motion estimation,
the found correspondences are weighted by sNGC,i,v according
to the respective image patch similarity, i.e.

sNGC,i,v = NGC(Ω(∇Iproj
d ,pi,v),Ω(∇IFL,p′i,v)) . (13)

The weights are incorporated into the PPC model by using
As = diag(s) ·A and bs = diag(s) · b in the motion estima-
tion, where s is a vector containing weights sNGC,i,v for all
correspondences and diag(·) is a diagonal matrix. To compute
the IRLS weights, equations without the applied sNGC,i,v are
considered to ensure that the residual errors represent actual
point-to-plane distances. The weights sNGC,i,v are additionally
multiplied to the IRLS weights in order to retain higher
weights for correspondences with higher similarity.

B. Regularized Motion Estimation

Regularized motion estimation using the PPC model [23]
is considered in order to further increase the robustness of
the registration. To regularize the rotational and translational
components equally, the rotational component is scaled to the
same range as the translational component. The scaling factor
sω is computed in a way to ensure that the maximum possible
influence of a vector δω with ‖δω‖2 = 1 on the residual
averaged over all correspondences is equal to the maximum
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influence of a translation vector δν with ‖δν‖2 = 1. It is
computed as

sω =

∑M
v

∑Nv

i ‖si,vni,v‖2∑M
v

∑Nv

i ‖si,v(ni,v ×wi,v)‖2
. (14)

The scaling is applied by multiplying the components of A
corresponding to the rotation by sω and reversed by multi-
plying sω to the scaled rotation vector δω̃. The regularized
motion estimation is combined with the motion estimation
using MCCR.

C. Used Coordinate System

A common coordinate system D is needed for the registra-
tion using PPC-M. To define D, we start with the coordinate
system C0 and shift the origin to the center of the registered
structure. If a registration iteration is performed for a single
view, the current view is treated as the only view C0, i. e. the
motion estimation is performed in the camera coordinates with
the origin shifted to the object center.

D. Iterative Registration

The registration is performed iteratively. To ensure
that correspondences are found for large misalignment, a
multi-resolution scheme is utilized [20] to effectively enlarge
the search range and the patch size. For single-view registra-
tion and the PPC-S method, the registration is performed on
the lowest resolution level without allowing motion in depth
first to improve the robustness of the method.

Following Wang et al. [20], we compute a quality measure
Qk, where k is the iteration index. This measure is used to
detect convergence. Additionally, the result of every resolution
level is selected from the iteration with the lowest value for
Qk. The quality measure is defined as

Qk =
r̄k

s̄k + η
, (15)

where r̄k is the mean residual over the used correspondences,
s̄k the mean similarity and η a constant to avoid division by
zero. To enable the computation for multi-view registration,
these measures are defined as follows.

The mean image similarity is computed as

s̄k =
1

M

M∑
v=1

1

Nv

Nv∑
i=1

NGC(Ω(∇Iproj
d,v ,pi,v),Ω(∇IFL

v ,pi,v)) ,

(16)
where M is the number of views. The mean residual r̄k
is defined differently depending on the used method. As all
correspondences are used simultaneous for PPC-M, it is the
resulting mean residual of the motion estimation. For PPC-A
and the refinement step in PPC-S, the motion is computed
sequentially for different views. In this case, the overall mean
residual is computed as the mean residual over all views.

For each resolution level, the final result is selected as the
iteration k leading to the lowest Qk [20]. The registration
is performed until the convergence criterion is met or the
maximum number of iterations is reached. The convergence
criterion is fulfilled if the difference between the quality

measure of two iterations and the difference between the old
and new minimum quality measure are sufficiently small [20].
Additionally, convergence is only assumed if the value of s̄k
exceeds a minimum threshold tc = 0.15.

For each resolution level, the results are rejected if s̄k′ < ts̄,
where k′ is the iteration leading to the lowest Qk and ts̄ is a
success threshold.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

A set of experiments are designed to compare the multi-view
registration methods between each other as well as to other
methods.

1) Evaluation Methodology and Metrics: We follow
the standardized evaluation methodology proposed by
van der Kraats et al. [31]. To evaluate the registration accuracy,
we mainly rely on the mean target registration error (mTRE),
which is defined as the distance of target points under the
ground truth (GT) registration and the estimated registration.
The mean re-projection distance (mRPD) is defined as the
distance between the target points under the GT registration
and the back-projection rays of the target points under the
estimated registration. To assess the robustness of a registration
method, success rate (SR) and capture range (CR) are used.
The SR is defined as the number of registrations below a
certain success criterion. In this work, we use a criterion
of mTRE ≤ 2 mm. The CR is the lower bound of the first
1 mm interval for which less than 95 % of registrations are
successful [11], [31].

For the gold standard (GS) vertebra dataset [32]
(see Sec. V-A2d), we additionally report results following
the evaluation methodology proposed by Tomaževič et al. [7]
to improve comparability. Here, the root mean square target
registration error (Rms(TRE)) is reported as well as the root
mean square angular error (Rms(γ)). The SR is computed
using the maximum error of the target points instead of the
mean value. We denote this variant of the SR as SRm. Instead
of a CR, the SRm is given for different initial error intervals.

2) Datasets: The datasets that are used in the evaluation
are summarized as follows:

a) GS Cerebral Angiography Data: It is a pub-
licly available cerebral angiography dataset introduced by
Mitrović et al. [11]. It consists of ten 3-D digital subtrac-
tion angiogram (DSA) images of the cerebral vessel tree of
different patients. For every volume, a set of 2-D images
of the anterior-posterior (AP) and in lateral (LAT) direc-
tion views are provided. Both 2-D DSA images as well
as native images (images with contrast agent but without
the background subtracted) are available. We focus on the
native images, as they contain additional structures making
the registration more challenging and therefore are well suited
to evaluate the robustness of a registration method. For each
3-D image, 400 uniformly distributed random start positions
are available [11]. Those are computed using the standardized
methodology proposed by van de Kraats et al. [31] and are
in the range of [0, 20] mm, with translations in the range of
[-20, 20] mm and rotations in the range of [-10, 10] degrees.
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Fig. 2. Example of acquisitions in the spine dataset. The upper row
shows samples of 2-D images IFL used for registration, the lower row
shows renderings of the corresponding 3-D images V . Vertebrae used in
single-vertebra registration evaluation are marked with a yellow cross, best
viewed in color.

Together with this dataset, Mitrović et al. [11] propose a
registration method, denoted as MGP, which is specifically de-
signed for vessel registration and is the state-of-the-art method
for this dataset regarding robustness. By combining it with the
backprojection gradient-based (BGB) registration method [7]
(see Sec. V-A2d), the highest accuracy among all compared
methods is achieved. The combined method is denoted as
MGP + BGB. Recently, MGP was compared to different
state-of-the-art registration methods for cerebral angiography
data and again showed the highest robustness [33]. To evaluate
the performance of our method, we compare it to MGP + BGB
for this dataset.

b) Spine Data: The spine dataset consists of six clinical
C-arm CT acquisitions of the lumbar and lumbar-thoracic
regions of the spine. We register the acquired 2-D projection
images to the reconstructed 3-D volumes. As the projection
images are the basis for the reconstruction, the GT registration
is known from the calibration of the system with an accuracy
of ≤ 0.16 mm for the projection error in the iso-center. Also,
we have many different views available and can perform reg-
istration from different angulations. Poisson-distributed noise
is added to the 2-D images and the intensities are normalized
to better simulate fluoroscopy images. Examples of the used
images are shown in Fig. 2. The 2-D images have a resolution
of 616×480 pixels with a pixel spacing of 0.608 mm. The 3-D
images have slices with a resolution of 512× 512 pixels and
contain about 390 slices. The voxel spacing is 0.49 mm in all
directions. For each volume, we define a volume of interest
(VOI) containing the spine while excluding other structures
like the pelvis or the ribs as much as possible.

We furthermore evaluate the registration performance for
single vertebrae. This is important in practice as the spine
may be deformed and the rigid motion assumption is only
valid for individual vertebrae, which have to be registered
individually. Furthermore, this enables us to observe the effect
that the size of the structures has on the registration. To obtain
the individual vertebrae, we split the VOI of the spine into
smaller VOIs for individual vertebrae. Overlap of the VOIs
is present as the border of the vertebrae cannot be divided
cleanly by a bounding box border. For each acquisition, two

(a) (b) (c) (d) (e)

Fig. 3. TEE data used for registration. The mesh used in the registra-
tion (green) as well as the removed parts (red) are shown in (a), best viewed
in color. Cropped fluoroscopy images (corresponding to 512×512 pixels in
the original images) are shown in (b) - (e). In multi-view registration, images
(b) and (c) as well as (d) and (e) are used as image pairs.

vertebrae are considered. For the four acquisitions of the
lumbar region, L3 and L4 vertebrae are considered, while for
lumbar-thoracic acquisitions, L1 and L2 are considered for
one of the acquisitions and T11 and T12 for the other. We put
an emphasis on single-vertebra registration, where single-view
registration is often not sufficient and a second view is needed
to reliably achieve an accurate registration.

For each spine as well as single vertebra used in reg-
istration, we generate 300 start positions which vary from
the ground truth position with translations in the range of
[-30, 30] mm and rotations in the range of [-15, 15] degrees,
yielding uniformly distributed initial mTRE in the range of
[0, 30] mm. Target points are uniformly distributed in the VOIs
representing the registered structures.

c) Transesophageal Echocardiography (TEE) Probe:
The geometry of the TEE probe is fixed and therefore a
single 3-D image can be used for registration on different
patients. We use a pre-processed high-resolution CT image
of the probe with a size of 160× 144× 572 voxels and a
spacial resolution of 0.1 mm in all directions. We use a dataset
similar to Kaiser et al. [14]. Fluoroscopic images with a size of
1024× 1024 and a spacial resolution of 0.184 mm are used as
IFL. Manual annotation is available and is used as the ground
truth.

A high-quality mesh representation of the probe is generated
by Kaiser et al. [34]. We use the mesh vertices of their
mesh instead of Canny-based surface extraction and substitute
the gradients {gi} with the vertex normals. To obtain a
sufficient number of contour points, sub-division of the mesh
faces is performed first. We observe that the TEE probe
contains repetitive structures which can adversary affect the
registration robustness and remove these structures from the
mesh (see Fig. 3 (a)). As the same mesh can be used for all
registrations of the TEE probe, this needs to be performed only
once and would not introduce a manual step to the registration
in clinical practice. We perform experiments on porcine data.
We use a total of 5 image pairs with 90◦ between the images.
For sample images, see Fig. 3 (b) - (e).

While methods specially adjusted to the registration of the
TEE probe achieve a high robustness and accuracy [14], [35],
our focus here is to compare the different multi-view registra-
tion schemes and optimizing the registration for the probe is
planned for future work.

d) GS Vertebra Dataset: We furthermore perform an
evaluation on the GS single-vertebra dataset published by
Tomaževič et al. [32]. Here, a phantom is created by placing
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a cadaver spine into a tube and applying markers to the tube
which are visible in the 2-D X-ray images as well as the
reconstructed volume. VOIs around the vertebrae are defined
for registration. As the markers are outside of the spine, no
markers are present in the VOIs. The dataset consists of 18
2-D images acquired from different angles and five volumes
containing the VOIs for the individual vertebrae. For each
vertebra, 450 start positions in the range [-20, 20] mm and
[-51.7, 51.7] degrees are defined as well as the combination of
2-D views to be used for the registration of each start position.
The backprojection gradient-based (BGB) registration method,
proposed by Tomaževič et al. [7], is evaluated on this dataset.
Due to the high accuracy it achieves, BGB is used as a
refinement step for other methods, e. g. by Mitrović et al. [11]
and Špiclin et al. [12]. As the volumes in this dataset have
an anisotropic resolution, we resample them to an isometric
voxel spacing of 0.75 mm.

B. Used Parameters

The PPC-based registration methods have a number of pa-
rameters. For many parameters, default values can be defined
which work well for all datasets. However, some parameters
need to be selected depending on the registered data. The
values of the relevant parameters are summarized in Tab. I.
The adjusted parameters, tθ, number of DLs, and minimum
used resolution level RLmin, are all concerned with the size
and shape of the registered structures.

The number of DLs is fixed to five following
Wang et al. [20] except for the TEE probe. As the
probe is a very small structure with a simple shape and few
overlapping structures, a single DL is used. The value of tθ
is adjusted manually to obtain contours without large holes
while preserving thin contours. In Fig. 4, the selection of tθ
is depicted for the angiography dataset as an example. We
select a low value of 80◦ for the TEE-probe. This is done
due to the fact that mesh vertices are used as contour points.
As these points are sparser compared to the Canny points, a
larger angle is needed to obtain a sufficient number of points.

The minimum resolution level Lm is selected as an image
resolution where the registered object is still well visible. We
observe that selecting a resolution level which is too low leads
to a failure of the registration method on the lowest resolution
level, even for small initial misalignment. Therefore, we verify
the selected resolution level by performing a few registrations
with small initial misalignment.

C. Evaluation Discussion

In the following section, the results of our experiments are
discussed.

1) Selection of Registration Success Criterion: As a
multi-resolution scheme is applied, the higher resolution levels
(larger images) depend on the results of the lower reso-
lution levels. However, large errors may be introduced in
small-misalignment cases due to the large search range for
patch matching, which offers more potentially wrong cor-
respondences. To obtain optimal performance, we expect a
minimum alignment quality after each resolution level. If the

TABLE I
PARAMETERS FOR PPC-BASED REGISTRATION METHODS AND

CORRESPONDING VALUES USED IN THE EVALUATED DATASETS. SCALING
FOR THE DIFFERENT RESOLUTION LEVELS IS 0.1, 0.25, 0.5, 0.75 1.0 OF
THE ORIGINAL IMAGE SIZE, WHERE THE LOWEST LEVEL USED FOR EACH
DATASET IS DENOTED IN THE TABLE AS WELL AS THE CORRESPONDING

IMAGE SIZE ON THE LARGER AXIS OF THE LARGEST IMAGE USED IN THE
DATASET (IN PARENTHESES). PARAMETER VALUES WHICH DO NOT

CHANGE FROM THE DATASET LOCATED IN THE NEIGHBOR LEFT ROW ARE
DENOTED WITH “←” TO EMPHASIZE THAT THEY ARE SHARED BETWEEN
DIFFERENT DATASETS. tNGC,RL 6=1 AND tNGC,RL=1 DENOTE THE VALUES
OF tNGC FOR ALL RESOLUTION LEVELS EXCEPT THE HIGHEST, AND THE

HIGHEST RESOLUTION LEVEL, RESPECTIVELY.

Parameter Spine GS Vertebra GS Angio TEE
ts̄ 0.15 ← ← ←
rΩ [pix] 12 ← ← ←
rs [pix] 16 ← ← ←
tNGC,RL 6=1 0.1 ← ← ←
tNGC,RL=1 0.2 ← ← ←
tθ [◦] 87 ← 86 80
# DLs 5 ← ← 1
RLmin 0.25 (154) 0.25 (390) 0.1 (248) 0.25 (256)

image similarity is below a threshold ts̄, the results of the
resolution level are rejected. To validate this approach and
select a value for ts̄, different thresholds are applied and the
results are compared. This experiment is performed on single
vertebrae, as registration of small structures is challenging and
the effect of the ts̄ is evident. For each vertebra, 60 start
positions are generated and the SR is examined to evaluate
the robustness.

The results are shown in Fig. 5. We observe that the
robustness is improved for increasing values of ts̄. For PPC-M,
an plateau with an SR of 88 % – 89 % is achieved for ts̄ ∈
[0.1, 0.2]. For PPC-S, the influence of ts̄ is minimal for values
below 0.25, with ts̄ = 0 leading to an SR of 84 % and the
values of 0.1 and 0.15 leading to an SR slightly above 85 %.
For PPC-A, the maximum robustness is achieved for ts̄ = 0.1
(77 %), while ts̄ = 0 leads to an SR of 71 %. However, if ts̄
is chosen too high (above 0.25), the robustness is decreased
for all methods.

We furthermore observe that for PPC-M as well as
PPC-S, the effect of ts̄ is small for initial errors in the
range [0, 10] mm. For large initial misalignment in the range
[20, 30] mm, a higher ts̄ only slightly increases the SR for
PPC-M and mostly has adversarial effects on the registration.
The highest increase in robustness is observed in the range
[10, 20] mm. For PPC-M, a large increase in SR is observed
for ts̄ ≥ 0.1, increasing from 86 % for ts̄ = 0 to 95 % for
ts̄ = 0.1 and 96 % for ts̄ = 0.15 For PPC-S, the effect is
smaller, leading to an SR of 88 % for ts̄ ∈ [0.1, 0.2]. For
PPC-A, ts̄ has a high effect in the range of [0, 20] mm. Here,
the maximum is very pronounced and the value of ts̄ has to be
selected carefully. In general, the results suggest that ts̄ has to
be selected in a way to reject clearly misaligned cases while
allowing for rough and imperfect alignment. For all following
experiments, we choose a value of ts̄ = 0.15 if not stated
otherwise.

2) Random Studies: In this section, we discuss the regis-
tration results on the evaluated datasets. The results for the
compared multi-view schemes are shown in Fig. 6.
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Fig. 4. Contour points selected for different values of tθ for the LAT (top) and AP (bottom) views of the first volume from the angiography dataset. Selected
and projected contour points are shown for 83◦, 86◦, and 89◦ (from left to right), 86◦ being the selected value. For reference, the magnitude of the projected
gradient of the volume is also shown for both views (right). While for 89◦, the contour points do not cover some parts of the vessels, 83◦ leads to an increased
number of points without considerably increasing the quality of the contour.
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Fig. 5. Success rate (SR) for different values of the success threshold ts̄ for
single-vertebra registration. The results are presented for different subintervals
of the initial mTRE. The evaluation was performed with 60 start positions per
vertebra in the range [0, 30] mm.

TABLE II
EVALUATION RESULTS FOR THE CEREBRAL ANGIOGRAPHY DATASET [11]

USING NATIVE 2-D IMAGES FOR THE MULTI-VIEW SCENARIO. RESULTS
FOR MTRE INCLUDE MEAN AND STANDARD DEVIATION. RESULTS FOR

MGP + BGB ARE INCLUDED FROM [11] FOR EASIER COMPARISON.

Method mTRE [mm] SR [%] CR [mm]
MGP + BGB [11] 0.23±0.10 90.7 12
PPC-A 0.23±0.07 86.1 9
PPC-S 0.23±0.07 99.6 20
PPC-M 0.22±0.07 98.4 18

a) GS Cerebral Angiography: The results for the GS
angiography data are shown in Table II. We observe that
both PPC-M and PPC-S outperform the reference method
(MGP + BGB) regarding robustness by a large margin: CR of
18 mm and 20 mm for PPC-M and PPC-S, respectively, com-

pared to 12 mm for MGP + BGB and SR of 99.6 % and 98.4 %
respectively for PPC-M and PPC-S, compared to 90.7 % for
MGP + BGB. Also, PPC-S leads to a slightly higher robustness
(SR of 99.6 % and CR of 20 mm) compared to PPC-M (SR of
98.4 % and CR of 18 mm). However, PPC-M is slightly more
accurate, achieving an mTRE of 0.22±0.07 mm. In general,
the differences regarding accuracy and robustness are small
between PPC-M and PPC-S. We observe that compared to
PPC-M and PPC-S, PPC-A is far less robust (SR of 86.1 % and
CR of 9 mm) and does not outperform the reference method.
One possible reason is the fact that registrations for both views
are performed sequentially and large errors in any view lead to
a failed registration, resulting in the low robustness. All PPC-
based methods achieve an accuracy on par with or slightly
better than MGB + BGR, without relying on a refinement step.

b) Whole Spine: The results for spine registration eval-
uation are shown in Table III. Similarly to the angiography
dataset, we observe that PPC-A is the least robust method,
achieving an SR of 92.0 % and a CR of 20 mm. The CR
is improved only slightly over single-view registration using
the AP view. The highest robustness is achieved by PPC-M
(SR of 98.2 % and CR of 25 mm), followed by PPC-S (SR
of 97.1 % and CR of 25 mm). The accuracy of the methods
is comparable. While PPC-A achieves 0.46±0.12 mm, both
PPC-M and PPC-S achieve 0.47±0.11 mm. For PPC-M, the
error is decreased by 0.55 mm compared to using only the
AP view and by 0.19 mm using the LAT view. This shows
that for the spine, high accuracy can be already achieved
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Fig. 6. Scatter plots showing the initial mTRE and the mTRE after registration
for all cases for the different data sets and the compared methods. Red
triangles indicate registration cases where the resulting error is outside the
shown range. Note the different scale of plots for different datasets. For
PPC-S, many failed cases lead to large errors outside of the plotted range (red
triangles). This is due to the unconstrained single-view registration, which
is performed in PPC-S and can lead to large errors for the out-of-plane
translation.

TABLE III
EVALUATION RESULTS FOR THE SPINE DATASET. RESULTS FOR MTRE

INCLUDE MEAN AND STANDARD DEVIATION. PPC INDICATES
SINGLE-VIEW REGISTRATION.

Structure Views Method mTRE [mm] SR [%] CR [mm]

Spine

AP PPC 1.02±0.40 88.8 16
LAT 0.66±0.33 84.9 8

AP &
LAT

PPC-A 0.46±0.12 92.0 20
PPC-S 0.47±0.11 97.1 25
PPC-M 0.47±0.11 98.2 25

Single
Vertebrae

AP PPC 1.34±0.49 6.8 0
LAT 1.12±0.48 44.9 0

AP &
LAT

PPC-A 0.50±0.15 71.6 11
PPC-S 0.51±0.15 87.6 16
PPC-M 0.47±0.12 86.5 16

using single-view registration for some views, and the gains
of multi-view registration are limited for these views.

c) Single Vertebrae: Results for single-vertebra registra-
tion are shown in Table III. We observe that for single-view
registration, the accuracy of the registration is decreased
considerably compared to the full spine for single-view regis-

TABLE IV
EVALUATION RESULTS FOR REGISTRATION OF THE TEE PROBE. RESULTS
FOR MTRE INCLUDE MEAN AND STANDARD DEVIATION. PPC INDICATES

SINGLE-VIEW REGISTRATION.

Method mTRE [mm] SR [%] CR [mm]
PPC 1.11±0.51 13.0 0
PPC-A 0.56±0.40 79.0 4
PPC-S 0.61±0.45 26.1 0
PPC-M 0.51±0.29 94.2 7

tration. For multi-view registration, the accuracy is decreased
for PPC-A and PPC-S (to 0.50±0.15 mm and 0.51±0.15 mm,
respectively). PPC-M achieves an accuracy of 0.47±0.12 mm,
on par with spine registration. In general, the robustness of
the registration is decreased compared to the whole spine. The
highest robustness is achieved by PPC-S, resulting in a SR of
87.6 % and a CR of 16 mm. PPC-M achieves an only slightly
lower SR of 86.5 % and the same value for the CR, namely
16 mm.

The SR (71.6 %) as well as the CR (11 mm) are considerably
smaller for PPC-A. For PPC-S, we observe failed cases for
relatively small initial errors (see Fig. 6). This indicates that
the refinement step at of the PPC-S method cannot handle
the increased out-of-plane error due to the smaller struc-
tures compared to the registration of the whole spine. This
is further substantiated by our experiments on convergence
(see Sec. V-C5), where we show that high errors are present
for PPC-S until the refinement phase and by the results for
the TEE probe as well as the GS vertebra dataset.

d) TEE Probe: The results for the TEE probe are
shown in Table IV. We observe that here, PPC-M clearly
outperforms PPC-S regarding robustness, leading to a CR of
7 mm and an SR of 94.2 %, compared to 0 mm and 26.1 %
for PPC-S. PPC-A achieves a CR of 4 mm and an SR of
79.4 %, outperforming PPC-S, but leading to a decrease of
the SR of around 15 percentage points and a decrease of
the CR of 3 mm compared to PPC-M. The best accuracy is
achieved by PPC-M (0.51±0.29 mm). While PPC-A is more
robust compared to PPC-S, it does not reach the robustness
of PPC-M, again showing the instability of the method. The
low robustness of PPC-S can be explained by the fact that
large out-of-plane errors are present in single-view registration,
which cannot be recovered using the second view and the
largest resolution level, i. e. full image resolution. We also
observe a large number of cases with errors around 15 mm
or below, even for small initial errors (see Fig. 6). This shows
that the error is introduced by the method regardless of a good
initial alignment, which is typical for translational out-of-plane
errors in small structures. Furthermore, we observe a relatively
low accuracy for all methods, with errors up to 2 mm mTRE
for a large set of cases (see Fig. 6). Compared to the other
data sets, no clear margin between successful and failed cases
exists. This shows that rough alignment does not guarantee
convergence. We observe that one reason is the symmetry
of the probe. While the outline of the probe visually seems
to be well aligned after registration, a rotation around the
centerline can be observed. Note that while such errors are
present for all compared methods, PPC-M shows a higher



IEEE TRANSACTIONS ON MEDICAL IMAGING 10

TABLE V
EVALUATION RESULTS FOR REGISTRATION OF THE GS VERTEBRA DATASET [32]. RESULTS FOR THE BGB METHOD [7] FROM THE ORIGINAL

PUBLICATION ARE PROVIDED WITH THE DATASET AND INCLUDED FOR EASE OF COMPARISON. THE SRM (SR USING THE MAXIMUM TARGET POINT
DISTANCE INSTEAD OF THE MEAN VALUE) IS GIVEN FOR DIFFERENT INTERVALS OF INITIAL ERRORS AND RANGES OF ROTATION. RESULTS FOR MTRE

INCLUDE MEAN AND STANDARD DEVIATION.

Method
Accuracy After Registration SRm [%]

mTRE [mm] SR [%] CR [mm]Rms(TRE) Max(TRE) Rms(γ) Max(γ) [0, 6] mm [6, 12] mm [12, 18] mm
[mm] [mm] [◦] [◦] [0, 17.2]◦ [17.2, 34.4]◦ [34.4, 51.7]◦

BGB 0.35 1.59 0.36 0.94 94.6 47.8 11.2 0.32±0.13 51.4 3
PPC-A 0.45 1.78 0.62 3.64 98.9 78.8 35.1 0.40±0.20 71.2 6
PPC-S 0.54 1.98 1.22 5.42 62.3 60.4 40.7 0.49±0.32 56.6 0
PPC-M 0.39 0.92 0.34 0.72 100 97.2 65.0 0.35±0.17 87.3 8

accuracy for small initial errors, especially below 2 mm. Here,
PPC-M achieves an accuracy of 0.35±0.12 mm, while PPC-A
achieves 0.44±0.28 mm.

e) GS Vertebrae: The results for the GS vertebra dataset
are shown in Tab. V. Compared to BGB, PPC-M achieves
a higher robustness, leading to an overall SR of 87.3 %,
compared to 51.4 % for BGB. While BGB leads to a higher
mean accuracy (Rms(TRE) of 0.35 mm compared to 0.39 mm
for PPC-M), the results are comparable and PPC-M achieves a
lower maximum error value (0.92 mm vs. 1.59 mm for BGB).
PPC-M outperforms both PPC-A and PPC-S regarding robust-
ness and accuracy. We observe that for PPC-S, registration fails
in many cases even for small initial misalignment (see Fig. 6),
leading to an error of roughly 4 mm or above. This sharp
border indicates that for larger out-of-plane errors of the
selected view, the refinement step of PPC-S is not successful.
While it may be possible to improve the results by performing
a multi-resolution refinement, this would further increase the
computational complexity of the method. PPC-S and PPC-A
lead to an Rms(TRE) of 0.54 mm and 0.45 mm, respectively.
Interestingly, PPC-S leads to a considerably lower accuracy in
comparison to PPC-A, although the refinement step of PPC-S
is identical to PPC-A. This indicates that the large out-of-plane
errors present for PPC-S before the refinement can affect the
accuracy of the result as well as the robustness.

3) Regularized Motion Estimation: We further investigate
the possibility to increase the registration robustness using
L2-regularized motion estimation. We perform experiments
for the singe-vertebra and TEE probe datasets, as these small
structures lead to a lower robustness compared to larger
structures and may benefit mostly from the regularized motion
estimation. We generate two start positions per mm for the
vertebrae (a total of 60 start positions) and 10 start positions
per mm for the TEE probe (a total of 100 start positions)
for each tested image combination. We investigate on the
registration robustness using different regularizer weights. We
do not enforce a minimum alignment quality using ts̄ to
avoid interdependencies between these parameters, as a high
λ may lead to lower similarity values s̄ due to incomplete
convergence while the registration error is actually decreased.
Furthermore, estimation of translations in depth is not disabled
for the lowest resolution level for PPC-S and single-view
registration, as it is the task of the regularizer to ensure robust
motion estimation.

The results for the single-vertebra and TEE probe registra-
tion with regularization are shown in Fig. 7. In both cases, the
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Fig. 7. SR for different values of the regularizer weight λ. PPC indicates
single-view registration averaged over both views and with a success criterion
of 2 mm mRPD. Larger symbols indicate results without regularization, where
no success criterion was applied and estimation of translational motion in
depth not restricted for PPC-S and single-view (see Sec. V-C3).

robustness of PPC-M is decreased by increasing λ. For PPC-A
and single-view registration, an increased robustness can be
observed as well as for PPC-S for registration of the TEE
probe. For the TEE probe, the SR for single-view registration
is increased only slightly, while the SR for PPC-S is improved
considerably. As the SR for PPC-S is very low without
regularization compared to single-view registration, this in-
dicates large out-of-plane errors, which cannot be recovered
by the refinement step but can be avoided by the regularized
motion estimation. The large effect of the regularizer on PPC-S
registration substantiates the conclusion that high out-of-plane
errors are responsible for the poor robustness of the method,
as these errors are reduced by the regularizer.

In general, PPC-A outperforms the other methods for larger
values of λ. For vertebra evaluation, it achieves an SR of 86 %
for λ = 0.05. We performed an evaluation for λ = 0.05 on
all start positions and achieved an SR of 82.8 % and a CR
of 16 mm again using ts̄ = 0.15 (SR of 84.2 % and a CR of
8 mm without ts̄).

For the TEE probe, the highest SR of 99 % is achieved by
PPC-A for λ = 2.5 · 10−3. We again performed an evaluation
on all start positions and achieved an SR of 97.0 % and a CR
of 8 mm, using ts̄ = 0.15 (SR of 96.9 % and a CR of 8 mm
without ts̄).

The results indicate that while regularization may be ben-
eficial for single-view registration and methods involving
single-view registration, i. e. PPC-A and PPC-S, PPC-M is ro-
bust and regularization only hinders the convergence. Further-
more, regularization is beneficial for PPC-S for the TEE probe,
while not leading to an advantage in vertebra registration. One
possible reason is that out-of-plane motion is reduced by the
regularization, preventing the out-of-plane errors to become
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Fig. 8. Results of systematic angle evaluation for PPC-M and single-vertebra
registration. Precision is the mean standard deviation of mTRE averaged over
all datasets.

too large for the refinement step to recover.
4) Systematic Angle Evaluation: As small angles between

the views decrease the obstruction of the clinical workflow, we
systematically investigate the registration performance using
the PPC-M method under different viewing angles. We per-
form the evaluation on single vertebra, as the effect of using a
second view is large regarding both accuracy and robustness.
Furthermore, images for many different angles are available.
We vary both the angle of the first view α0 and the angular
distance between the views dα. The results are shown in Fig. 8.
An angle of α0 roughly corresponds to the posterior-anterior
(PA) view and dα = 0 indicates single-view registration.

As indicated in Fig. 8, the SR of multi-view registration
using dα = 15◦ is largely increased compared to single-view
registration (80.7 % vs. 44.6 %). It continues to increase for
larger angles and reaches a value of 85.8 % for dα = 30◦ and
a plateau with an average SR of 88.5 % for dα ≥ 45◦. The
accuracy (see Fig. 8 (b) and (e)) is also strongly increased for
multi-view registration. The mTRE decreases from 1.03 mm
for single-view registration to 0.68 mm for dα = 15◦ and
0.50 mm for dα = 30◦. From there, it decreases only slightly,
achieving the minimum value (0.47 mm) for dα = 75◦. A
similar effect is observed for the precision, which is 0.36 mm
for single-view registration and decreases to 0.11 mm for
dα = 15◦ and 0.06 mm for dα = 30◦. It decreases slightly
from there on and reaches a minimum of 0.05 mm for
dα = 75◦.

In general, we observe that the registration performance is
increased for multi-view registration. However, a high accu-
racy is already achieved for dα = 30◦. The SR is increased
until dα = 45◦ and varies only slightly for higher angles. In
order to decrease the obstruction of the clinical workflow,
dα = 30◦ (or even dα = 15◦) can be used, decreasing the
registration performance only slightly. This shows that angles
below 90◦ between the views are sufficient. While we show
that 30◦ between the views is sufficient for single-vertebra
registration, a smaller angle may suffice for larger and more
complex structures. On the other hand, smaller or less complex

structures such as cervical vertebrae or the TEE probe may
exhibit less change in appearance for small angle differences
and a larger angle above 30◦ may be necessary for reliable
registration.

Our findings are in line with Uneri et al. [13], where the
authors demonstrate that high registration accuracy can be
achieved for small angles, reaching the optimal accuracy for
angles ≥ 20◦ between the views. Note that the results are
not directly comparable, as larger anatomical structures were
registered by Uneri et al. and only accuracy was evaluated.
Nevertheless, this shows that relatively small angles can be
sufficient for optimal or near-optimal multi-view registration
and that this effect is not specific to a single registration
method.

5) Convergence: We compare the convergence of the differ-
ent methods. The results for single-vertebra registration can be
seen in Fig. 9. For PPC-M and regularized PPC-A, we observe
that for every resolution level, the minimum mean and median
error is achieved after a small number of iterations. For the
lowest resolution level, the error is increased in some of the
cases, leading to an increasing 95th percentile. For PPC-A
without regularization, the error is increasing on the lowest
resolution level for many cases (increasing 75th percentile and
mean value). The median error is decreasing for the lowest
resolution level. However, the convergence is slower compared
to PPC-M and regularized PPC-A. Additionally, an oscillation
is observed. This behavior is expected if one of the views
leads to correct registration, while the other view introduces
a higher error. For PPC-S, we observe a high median error
which decreases steadily throughout the resolution levels. We
observe an instability on the lowest resolution level when
motion estimation in depth is enabled, which leads to a highly
increased 95th percentile and mean value, while the median
is slightly reduced and the 75th percentile does not change
much. The high-error cases are recovered due to discarding
of the results of this resolution level. Furthermore, cases with
relatively high errors are present until the refinement step. This
illustrates the challenge of PPC-S for the registration of small
structures, where high out-of-plane errors are present.

6) Runtime: The runtime for different structures is shown
in Tab. VI. We observe that in general, PPC-M and PPC-A lead
to comparable runtime, while PPC-S has an increased runtime
due to the refinement step and the additional iterations at
lowest resolution levels without motion in depth. Furthermore,
comparing the vertebra and the GS vertebra datasets, we
observe that the registration is faster for the GS dataset. This is
most probably due to the lower resolution of the used volume.
As discussed in Sec. V-C5, only a few iterations are needed for
each resolution level. However, more iterations are currently
performed, especially for later resolution levels. Therefore, the
runtime can be further improved by limiting the number of
iterations or by carefully choosing a convergence criterion to
avoid unnecessary iterations. Additional optimizations can also
be investigated, e. g. reducing the 3-D resolution or limiting
the number of contour points.
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Fig. 9. Convergence evaluation for single-vertebra registration. Vertical lines indicate a change in the resolution level. Iteration number 0 indicates initial
error. For PPC-S, registration is performed for the lowest resolution first without motion estimation in the viewing direction and then with. These steps are
also separated. Last resolution level for PPC-S is the refinement step. Only the selected view is considered for PPC-S. For PPC-A, one iteration consists of
two single-view registration steps. In case of convergence before the iteration limit, the result is set to a constant error equal to the last performed iteration.
For each vertebra, 25 registrations for an initial mTRE in the range [5, 30] mm are considered.

TABLE VI
RUNTIME (MEAN VALUE AND STANDARD DEVIATION) FOR PPC-BASED
MULTI-VIEW REGISTRATION METHODS FOR THE DIFFERENT DATASETS.

EXPERIMENTS WERE PERFORMED ON A MACHINE WITH A XEON E5-2620
CPU WITH 2.4 GHZ (BOOST UP TO 3.2 GHZ), 6 CORES AND A NVIDIA

QUADRO M4000 GPU (1664 CUDA CORES, 773 MHZ, MEMORY
BANDWIDTH: 192.3 GB/S) OR ON A SLOWER SYSTEM. FOR EACH

DATASET, ALL METHODS WERE RUN ON THE SAME SYSTEM.

Dataset Method Runtime [s]

angio
PPC-A 49.7±25.1
PPC-S 65.2±12.3

PPC-M 42.7±9.5

spine
PPC-A 35.3±11.0
PPC-S 58.0±10.3

PPC-M 40.4±9.6

vertebra
PPC-A 12.6±3.5
PPC-S 17.9±4.1

PPC-M 13.7±4.5

TEE probe
PPC-A 11.8±5.2
PPC-S 13.7±5.5

PPC-M 8.8±4.7

GS vertebra
PPC-A 7.8±1.3
PPC-S 11.8±1.5

PPC-M 7.0±1.4

VI. CONCLUSION

In this paper, the PPC model is extended to be independent
of the camera coordinate system. The extension is based on the
facts that the PPC model describes the distances of 3-D points
to planes representing contours in the 2-D image and distances
are invariant to rigid transformations. The view-independent
PPC model enables motion estimation directly in a coordinate
system related to the camera coordinates by a rigid trans-
formation. Thereby, it enables motion estimation combining
correspondences from multiple views. Additionally, it allows
meaningful regularized motion estimation by allowing to shift
the coordinate system to make the rotational and translational
components of the motion independent from each other.

Different multi-view registration schemes are compared and
investigations on the effect of regularized motion estimation
are carried out. Experiments are performed using clinical data
sets, i. e. a GS cerebral angiography dataset as well as a spine
dataset and a GS vertebra dataset. For the spine dataset, the
evaluation is performed for the whole visible region of the
spine as well as for single vertebrae. Additionally, experiments
for TEE probe registration are performed on a porcine dataset.

The results demonstrate that PPC-M, in contrast to PPC-S

and PPC-A, performs reliably for a wide range of use cases.
While PPC-A in combination with regularized motion estima-
tion and PPC-S can achieve comparable results or even slightly
outperform PPC-M for some data sets, PPC-M performs
well for all use cases and shows a fast convergence. It is
furthermore not dependent on regularized motion estimation
and achieves the highest accuracy among PPC-based methods
for small structures.

PPC-M achieves a high robustness and accuracy for differ-
ent use cases. For the GS angiography dataset, our method
demonstrates a highly increased robustness comparing to the
state-of-the-art reference method while maintaining a high ac-
curacy without requiring a refinement step. On the GS vertebra
dataset, we compare our method to BGB, which is often used
as a refinement step in other methods due to the high accuracy
it can achieve. We demonstrate a highly increased robustness
of our method, while achieving a comparable accuracy.

We furthermore investigate the dependency of the registra-
tion on the angulation of the views and show that relatively
small angles around 30◦ allow for robust and accurate regis-
tration for single vertebrae. While larger angles may improve
the registration, the improvement is small and relatively small
angles around 30◦, or even 15◦, may be advantageous to
reduce the obstruction of the workflow while still allowing
reliable registration.

VII. FUTURE WORK

The weights for the used correspondences are defined
based on the local image similarity. However, more advanced
weighting criteria can be considered, i. e. by extending our
previously proposed learning-based weighting method [23]
to multi-view registration. Furthermore, the success criterion
and quality measure used for the individual resolution levels
can be improved, and possibly learned. This would lead to
more robust and faster registration and possibly enable an
automatic detection of misregistrations. In general, the amount
of heuristics used for the registration can be reduced. The reg-
istration of the TEE probe is challenging due to its symmetrical
structure. As the probe contains symmetry-breaking structures,
exploiting these structures is a promising direction. Another
direction is to extend the method to other modalities, e. g. to
MRI volumes or CAD models of implants.
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While we show the effectiveness of the proposed method
for different structures, the evaluation is not exhaustive and
further experiments are needed to characterize the performance
of the method for other use cases. Especially, evaluations
can be performed for cervical and higher thoracic vertebrae
in order make sure that the proposed method performs well
for those structures and to investigate whether the proposed
view distance of 30◦ is sufficient for those structures. In order
to further improve the robustness of the method, multi-start
approaches can be investigated, e. g. as a way to better cope
with the repetitive structure of the spine.
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