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Abstract
The INTERSPEECH 2019 Computational Paralinguistics Chal-
lenge addresses four different problems for the first time in a
research competition under well-defined conditions: In the Styr-
ian Dialects Sub-Challenge, three types of Austrian-German
dialects have to be classified; in the Continuous Sleepiness Sub-
Challenge, the sleepiness of a speaker has to be assessed as re-
gression problem; in the Baby Sound Sub-Challenge, five types
of infant sounds have to be classified; and in the Orca Activity
Sub-Challenge, orca sounds have to be detected. We describe the
Sub-Challenges and baseline feature extraction and classifiers,
which include data-learnt (supervised) feature representations by
the ‘usual’ ComParE and BoAW features, and deep unsupervised
representation learning using the AUDEEP toolkit.
Index Terms: Computational Paralinguistics, Challenge, Styr-
ian Dialects, Sleepiness, Baby Sounds, Orca Activity

1. Introduction
In this INTERSPEECH 2019 COMPUTATIONAL PARALIN-
GUISTICS CHALLENGE (COMPARE) – the eleventh since 2009
[1], we address four new problems within the field of Computa-
tional Paralinguistics [2] in a challenge setting: In the Styrian
Dialects Sub-Challenge, three Austrian-German regional vari-
ants have to be told apart. Dialect classification is not only
relevant for interaction optimisation in voice control applications
or call centre services, but also for baseline estimation in speech
diagnostics and speech-language therapy, and plays a valuable
role as a tool in forensics [3, 4]. In the Continuous Sleepiness
Sub-Challenge, the sleepiness of a speaker has to be assessed
as regression problem. Monitoring and detecting sleepiness
[5] is of high relevance for Advanced Driver Assistance Sys-
tems and other safety sensitive fields [6, 7]. In the Baby Sound

Sub-Challenge, five types of infant speech sounds have to be
classified. A possible application is diagnostics for developmen-
tal delay, based on the type and quantity of sounds that infants
produce [8]. Finally, in the Orca Activity Sub-Challenge, orca
sounds have to be detected. Collecting such bioacoustic data
is an essential and practical tool to study and gain information
about vocally active marine species [9, 10, 11, 12], providing
invaluable information for ecosystem monitoring.

For all tasks, a target value/class has to be predicted for
each case. Contributors can employ their own features and
machine learning algorithms; standard feature sets and proce-
dures are provided. Participants have to use predefined train-
ing/development/test splits for each Sub-Challenge. They may
report results obtained from the training/development set (prefer-
ably with the supplied evaluation setups), but have only five
trials to upload their results on the test sets per Sub-Challenge,
whose labels are unknown to them. Each participation must be
accompanied by a paper presenting the results, which under-
goes peer-review and has to be accepted for the conference in
order to participate in the Challenge. The organisers preserve the
right to re-evaluate the findings, but will not participate in the
Challenge. As evaluation measure, we employ: (1) Unweighted
Average Recall (UAR) as used since the first Challenge from
2009 [1], especially because it is more adequate for (unbalanced)
multi-class classifications than Weighted Average Recall (i. e.,
accuracy) [2, 13]; (2) Spearman’s Correlation Coefficient (ρ)
[14] as the more ‘conservative’ and robust alternative to Pear-
son’s [15] or Concordance Correlation Coefficient [16]; and (3)
Area Under the Receiver Operating Characteristic Curve
(AUC). Ethical approval for the studies has been obtained from
the pertinent committees. In section 2, we describe the challenge
corpora. Section 3 details baseline experiments, metrics, and
baseline results; concluding remarks are given in section 4.



2. The Four Sub-Challenges
2.1. The Styrian Dialect (SD) Sub-Challenge

Styria, the south-eastern province of Austria with the city of
Graz as its provincial capital, is embedded in a linguistic di-
alectal continuum termed Middle Bavarian in the North and
a transition zone towards South Bavarian over the other parts
[17, 18]. Urban centres such as Graz differ from rural regions,
amongst other factors due to a greater mobility – neither ‘dialect’
nor ‘standard’ is spoken; rather, these two ‘ideals’ can be re-
garded as orientational points for speakers mixing characteristics
of both systems to a variable extent [19]. Most knowledge of
Styrian dialects is still based on descriptions from the late 1960s;
cf. [18]. Therefore, a dialect task force at the University of Graz
recently carried out a comprehensive collection of data. The
so-called ‘STYRIALECTS’ dataset comprises audio recordings
of Austrian-German speakers representative for different dialect
areas of Styria. All recordings were conducted with an Edirol
R-09 wave recorder (single-channel/22.05 kHz/16 bits/PCM) in
an interview setting usually consisting of three parts, namely (1)
a questionnaire compiled with regard to expected dialectal fea-
tures, (2) a picture naming task, and (3) a short free conversation
about language attitudes towards standard language and dialect.
For the Styrian Dialects Sub-Challenge, the recordings of 55
speakers (22 males, 33 females; mean age 48.0 ± 22.3 years)
from 25 different Styrian places were automatically segmented
into target utterances of length 0.3 s–1.5 s by means of a speaker
diarisation algorithm. Subsequently, all segments were manually
revised yielding 9 732 samples of three different Styrian dialects
to be differentiated: Northern Styrian (NorthernS), Urban Styr-
ian (UrbanS), and Eastern Styrian (EasternS). Partitioning was
speaker- and interviewer-independent.

2.2. The Continuous Sleepiness (CS) Sub-Challenge

For the Continuous Sleepiness Sub-Challenge, the SLEEP
(Düsseldorf Sleepy Language) Corpus was created at the In-
stitute of Psychophysiology, Düsseldorf, and the Institute of
Safety Technology, University of Wuppertal, Germany. The
sub-set of the corpus used for this Sub-Challenge consists of
915 subjects (364 females, 551 males, age from 12 to 84 years,
mean age 27.6±11.0 years). The recordings were made in quiet
rooms using a microphone/headset/hardware setup with the tasks
presented on a computer in front of the participants. Audio files
were recorded with 44.1 kHz and down-sampled to 16 kHz, with
a quantisation of 16 bit. The speech material consists of different
reading passages and speaking tasks. Furthermore, spontaneous
narrative speech was elicited by asking subjects to briefly com-
ment on, e. g., their last weekend, the best present they ever got,
or to describe a picture. A session of one subject lasted from 15
minutes to 1 hour; recordings took place from 6 am to midnight.
Each participant had to report sleepiness on the well-established
Karolinska Sleepiness Scale (KSS) [20] with a range of 1 (ex-
tremely alert) to 9 (very sleepy). Two raters assigned post-hoc
observer KSS ratings. The scores from self-assessment and ob-
servers are averaged to form the reference sleepiness values, cf.
[21]. Note that speakers and problem (correlation instead of
classification) differ from the task addressed in the Interspeech
2011 Speaker State Challenge [22].

2.3. The Baby Sound (BS) Sub-Challenge

In the Baby Sounds Sub-Challenge, five types of infant sounds
have to be classified: (1) canonical babbling (with a consonant
and vowel), (2) non-canonical babbling, (3) crying, (4) laughing,

and (5) junk/other. Our current dataset contains 12 445 vocalisa-
tions from 46 healthy infants (2-36 months) without any known
speech or developmental delays. The children were exposed to
a range of languages: English, Spanish, Tsimane, Tseltal, and
Quechua, and were recorded as part of several studies on child
language development, cf. [23, 24, 25, 26, 27]. Recordings were
made using the Language ENvironment Analysis (LENA) Digi-
tal Language Processor [28], a lightweight audio recording de-
vice. Children wore the recorder for extended periods, between 6
and 16 hours, inside a clothing pocket specially designed for the
device. Recordings were then processed using the proprietary
LENA analysis system which assigns utterances to speakers in
the child’s environment (e. g., female adult) or to the target child.
We randomly sampled 100 of these child vocalisations from one
recording per child. The only exception to this was for the Casil-
las corpus [25] where an Olympus audio recorder (WS-832 or
WS-835) was used and the vocalisations were hand-segmented.
The vocalisations could vary in length from 36 ms to 18.34 s;
they were segmented into chunks of 36 ms to 500 ms length,
with a modal value of 400 ms. Chunks were then categorised
according to our 5-way annotation scheme at least three times
on the citizen science platform iHEARu-PLAY [29]. Only those
vocalisations were kept where the majority of the annotators (at
least two) agreed on the label. All chunks < 70 ms were padded
with silence to match 70 ms as ComParE features require a min-
imum length of 65 ms. The final dataset consisting of 11 304
chunks was partitioned in a baby-disjunct way, while keeping
the ages balanced across partitions.

2.4. The Orca Activity (OA) Sub-Challenge

For the Orca Activity Sub-Challenge, we use parts of the
DeepAL Fieldwork Data (DLFD), collected on a 15-meter re-
search trimaran in 2017 and 2018 in Northern British Columbia.
A custom-made high sensitivity and low noise towed-array was
deployed, which has a flat frequency response of within +/-2.5 dB
between 10 Hz and 80 kHz. Underwater sounds were digitised
with a sound acquisition device (MOTU 24AI), sampling at
96 kHz, recorded by PAMGuard, and stored on hard drives as
multichannel wav-files (4 hydrophones in 2017; 8 hydrophones
in a towed array in 2018). The total amount of collected audio
data comprises 157 hours (1 channel). The overall number of
annotations comprises ∼5.66 h; pure orca annotations amount to
∼1.40 h, distributed over 3 197 audio clips (1 channel). Includ-
ing the multiple channels, the whole dataset comprises ∼1 007 h
total audio, ∼40.93 h overall annotations, and ∼9.88 h pure orca
annotations. For this sub-challenge, we use a sub-sample that
amounts to a total duration of 4.6 hours (sound files: range 0.3-
5.0 s; mean duration 1.23 ± 0.96 s). The two classes to be told
apart are noise vs orca sounds.

3. Experiments and Results
For all Sub-Challenges, the segmented and categorised audio
was converted to single-channel 16 kHz, 16 bits PCM format,
except for the Orca Activity Sub-Challenge, where it is provided
with 44.1 kHz sampling rate and multi-channel audio is provided
(4/8 channels) in addition to the usual single-channel audio files.

3.1. COMPARE Acoustic Feature Set

The official baseline feature set is the same as has been used
in the six previous editions of the INTERSPEECH COMPARE
challenges, starting from 2013 [30]. This feature set contains



Table 1: Databases: Number of instances per class in the
train/dev/test splits: Test split distributions are blinded during
the ongoing challenge and will be given in the final version.

# Train Dev Test Σ
Styrian Dialects (STYRIALECTS)
NorthernS 1 365 431 463 2 259
UrbanS 2 455 1 597 423 4 475
EasternS 1 407 542 1 049 2 998
Σ 5 227 2 570 1 935 9 732
Düsseldorf Sleepy Language Corpus (SLEEP)
1-9 (KSS) 5 564 5 328 5 570 16 462
Baby Sounds (BS)
Canonical 444 378 604 1426
Crying 243 163 263 669
Junk 1 826 1 357 1 392 4 575
Laughing 46 41 62 149
Non-canonical 1 437 1 678 1 370 4 485
Σ 3 996 3 617 3 691 11 304
DeepAL Fieldwork Data (DLFD)
Noise 3 766 2 795 4 065 10 626
Orca 1 057 720 1 006 2 783
Σ 4 823 3 515 5 071 13 409

6 373 static features resulting from the computation of various
functionals (statistics) over low-level descriptor (LLD) contours
[30]. The configuration file is the ComParE_2016.conf, which is
included in the 2.3 public release of OPENSMILE [31]. A full
description of the feature set can be found in [32].

3.2. Bag-of-Audio-Words

In addition to the default ComParE feature set, where func-
tionals are applied to the acoustic LLDs, we provide Bag-of-
Audio-Words (BoAW) features. BoAW has already been applied
successfully for, e. g., acoustic event detection [33] and speech-
based emotion recognition [34]. Audio chunks are represented
as histograms of acoustic LLDs, after quantisation based on
a codebook. One codebook is learnt for the 65 LLDs from
the COMPARE feature set and another one for the 65 deltas of
these LLDs. In Table 2, results are given for different code-
book sizes. Codebook generation is done by random sampling
from the LLDs/deltas in the training data. Each LLD/delta is
assigned to the 10 audio words from the codebooks with the
lowest Euclidean distance. Both BoAW representations, one
from the LLDs and one from their deltas, are concatenated.
Finally, a logarithmic term frequency weighting is applied to
compress the numeric range of the histograms. LLDs are ex-
tracted with the OPENSMILE toolkit, BoAW are computed using
OPENXBOW [35].

3.3. AUDEEP

Another feature set is obtained through unsupervised representa-
tion learning with recurrent sequence to sequence autoencoders,
using the AUDEEP toolkit1 [36, 37]. Representation learning
commonly requires less human intervention than manually engi-
neering a feature set such as the COMPARE acoustic feature set.
The recurrent sequence to sequence autoencoders which are em-
ployed by AUDEEP, in particular, explicitly model the inherently
sequential nature of audio with RNNs within the encoder and
decoder networks [36, 37]. In the AUDEEP approach, Mel-scale

1https://github.com/auDeep/auDeep

Table 2: Results for the four Sub-Challenges. The official base-
lines for test are highlighted (bold and greyscale). Dev: Develop-
ment. C: Complexity parameter of the SVM/SVR. N : Codebook
size for Bag-of-Audio-Words (BoAW) splitting the input into two
codebooks (ComParE-LLDs/ComParE-LLD-Deltas) of the same
given size, with 10 assignments per frame, and optimised com-
plexity parameter of the SVM. S2SAE: Sequence to Sequence
Autoencoder. X: Power levels which are clipped below four
given thresholds. UAR: Unweighted Average Recall. ρ: Spear-
man’s correlation coefficient. AUC: Area under ROC curve.

Styrian Sleepiness Baby Orca
Dev Test Dev Test Dev Test Dev Test
UAR [%] ρ UAR [%] AUC

C OPENSMILE: COMPARE functionals + SVM
10−5 37.8 33.9 <0 .007 50.2 52.2 .680 .759
10−4 38.8 35.9 .074 .237 54.0 57.7 .767 .841
10−3 37.3 33.3 .251 .314 51.1 54.2 .810 .866
10−2 37.4 33.5 .206 .290 45.6 49.5 .795 .855
10−1 37.2 35.7 .163 .227 40.8 45.3 .767 .826
100 38.0 36.0 .127 .172 39.1 43.6 .754 .806
N OPENXBOW: COMPARE BoAW + SVM
125 38.2 31.9 .240 .291 51.5 52.7 .772 .815
250 38.2 32.4 .236 .268 51.0 54.3 .763 .822
500 38.2 31.2 .250 .304 51.2 53.7 .762 .831
1000 37.4 32.2 .265 .286 51.1 54.3 .770 .823
2000 38.0 32.0 .269 .260 51.0 54.9 .771 .836
X dB AUDEEP: S2SAE + SVM
-40 43.7 37.3 .128 .205 48.4 44.1 .714 .772
-50 44.4 47.0 .213 .301 49.0 43.8 .700 .781
-60 44.6 39.4 .243 .325 49.8 46.9 .730 .776
-70 46.7 34.0 .261 .310 49.6 47.8 .712 .774
fused 45.9 35.5 .257 .321 51.6 48.1 .740 .798

Fusion (Majority Vote)
3-best − 40.0 − .343 − 58.7 − .866

spectrograms are first extracted from the raw waveforms in a
data set. In order to eliminate some background noise, power
levels are clipped below four given thresholds in these spectro-
grams, which results in four separate sets of spectrograms per
data set. Subsequently, a distinct recurrent sequence to sequence
autoencoder is trained on each of these sets of spectrograms in
an unsupervised way, i. e., without any label information. The
learnt representations of a spectrogram are then extracted as fea-
ture vectors for the corresponding instance. Finally, these feature
vectors are concatenated to obtain the final feature vector. For
the results shown in Table 2, the autoencoders’ hyperparameters
were not optimised.

3.4. Challenge Baselines

For the sake of transparency and reproducibility of the baseline
computation and in line with the previous years, we use an open-
source implementation of Support Vector Machines (SVM) with
linear kernels. This year, for the first time, the provided scripts
employ the SCIKIT-LEARN toolkit with its classes LINEARSVC
and LINEARSVR, respectively, for the classification based on
functionals, BoAW, and AUDEEP features. All feature repre-
sentations were scaled to zero mean and unit standard deviation
(MINMAXSCALER of SCIKIT-LEARN), using the parameters
from the respective training set (when training and development
sets were fused for the final classifier, the parameters were cal-
culated on this fusion). For all tasks, the complexity parameter

https://github.com/auDeep/auDeep
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Figure 1: Confusion matrices on the development set; overall number of instances per task given in Table 1. For each Sub-Challenge, the
individual approach/hyperparameters performing best on the test set were chosen, i. e., AUDEEP with a clipping threshold of -70 dB and
optimised complexity for the Styrian Dialects task, BoAW with a codebook size of 2 000 and optimised complexity for the Continuous
Sleepiness task, and COMPARE with a complexity of 10−4 for the Baby Sounds task. In the cells, absolute number of cases is given, and
percent of ‘classified as’ of the class displayed in the respective row; percentage also indicated by colour-scale: the darker, the higher.

C was optimised during the development phase. For the Baby
Sounds Sub-Challenge, we upsampled the minority classes in
order to balance the five classes in the training (and develop-
ment) sets; for the Styrian Dialects Sub-Challenge, training and
development sets were not fused as the development set is con-
siderably smaller in size owing to the sparseness of the data.
Apart from this, the pipelines are basically the same, except
from the fact that a linear Support Vector Regression is used
for the Continuous Sleepiness Sub-Challenge and confidences
are computed for the Orca Activity Sub-Challenge, as the area
under the ROC curve is used as a metric.

Each Sub-Challenge package includes scripts that allow
participants to reproduce the baselines and perform the testing
in a reproducible and automatic way (including pre-processing,
model training, model evaluation on the development set, and
scoring by the competition and further measures).

This year, we provide the three above outlined approaches
to Computational Paralinguistics: besides the usual COMPARE
features plus SVM, we employ for the third time BoAW plus
SVM, and for the second time sequence-to-sequence autoen-
coder (AUDEEP) learnt acoustic features, classified with an SVM,
leaving, however, end-to-end learning from the raw time signal
out. The same way as in the last two years, we chose the high-
est results on test for defining the baselines, irrespective of the
corresponding results on development, in order to prevent partic-
ipants from surpassing the official baseline by simply repeating
or slightly modifying other constellations that can be found in
Table 2. A fusion of the three models has been made by Majority
Voting for the Styrian Dialects and Baby Speech Sub-Challenges
and by taking the mean of the outputs for the Continuous Sleepi-
ness and Orca Activity Sub-Challenges.

As can be seen in Table 2, for the Styrian Dialects Sub-
Challenge, the baseline is UAR = 47.0 %, for the Continuous
Sleepiness Sub-Challenge, it is Spearman’s ρ = .343, for the
Baby Sounds Sub-Challenge, it is UAR = 58.7 %, and for the
Orca Activity Sub-Challenge, it is AUC = .866. Note that there
is no ‘official’ baseline for Dev!

Figure 1 displays a ‘good’ confusion for the Baby Sounds
Sub-Challenge (high frequencies in most of the diagonal cells)
and the difficulty of the other tasks (low frequencies in some of
the diagonal cells, high frequencies in some of the off-diagonal

cells). Laughing is very sparse and it might therefore not be
possible to model it robustly enough; in contrast, Non-canonical
might show too much variability and similarity to the other
classes. For the Styrian Dialects Sub-Challenge, UrbanS as
majority class with mixed characteristics, by that possibly dis-
playing greatest variance, is classified best; NorthernS seems
to be least distinct from the other two varieties. In the SLEEP
corpus, the extreme labels 1, 2, 8, 9, and to a slightly lesser
extent, 3 and 7, are underrepresented – maybe less distinct – and
cannot be modelled robustly; the classes in the middle – 4, 5, and
6 – are more frequent and confused with each other, and they
attract the sparse, extreme labels, cf. the uniformly colour-scaled
columns for 4, 5, and 6.

4. Concluding Remarks
This year’s challenge is new by four new tasks (Styrian Dialects,
Continuous Sleepiness, Baby Sounds, and Orca Activity, all
of them highly relevant for applications). We further featured
sequence-to-sequence autoencoder-based audio features by the
AUDEEP toolkit using deep learning for audio classification
for the second time as baselines and the popular OPENXBOW
toolkit. For all computation steps, scripts are provided that can,
but need not be used by the participants. We expect participants
to obtain better performance measures by employing novel (com-
binations of) procedures and features including such tailored to
the particular tasks.
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