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ABSTRACT

The annually produced quantity of solar modules has steadily increased over the last decades. Rising production speeds and
the associated high throughput of wafers, cells and modules will make an automatized quality inspection mandatory. In case of
visual optical inspection, automatized quality control by using machine-vision is already possible. To localize cracks in solar
cells, luminescence imaging is used where several approaches for an automatized inspection exist but a standard solution
for an automatized inspection algorithm is not yet available. This is in particular true for multicrystalline solar cells where the
grainy structures in the luminescence images are hard to distinguish from small cracks. Another obstacle in automatic crack
analysis is that reference segmentation algorithms are generally not publicly available. Accordingly, a new algorithm can hardly
be compared by ranking it to an existing standard.
In this work, we adapted the Vesselness algorithm for automatic processing of electroluminescence images of multicrystalline
silicon solar cells. Segmentation of cracks in multicrystalline solar cells with the proposed eCS algorithm shows very promising
results on the used database compared to three different, commonly used approaches. Furthermore, the segmentation code
is made publicly available and we propose that this algorithm may serve as reference algorithm sparking further progress in
automatized crack detection for multicrystalline silicon solar cells.

1 Introduction
Energy production based on sustainable resources becomes more and more important. As an example, consider the increase
of renewable electricity production from 83.7TWh in 2000 to 1178.2TWh in 20151, which even excludes hydro power.
Photovoltaics (PV) may contribute a major part to future renewable energy supply. Despite a certain current political headwind,
the relevance of “renewables” and PV will most likely continue to rise also within the next decades. Some countries may even
reduce their efforts in pushing renewables forward as there are other countries in the world capable of closing this gap. As
an example, the largest PV park in the world used to be in the United States of America (with 550MW). Nowadays, several
“Mega”-PV parks with at least 1GW (existing and planned) are located in three different countries: China, India and the United
Arab Emirates2.

Following this trend, more and more solar modules are sold and production will further ramp up. Module costs have
been falling by almost a factor of five between 2011 and 2018 (from 1.6USD/Wp to 0.34USD/Wp) and costs will be further
optimized3. Thus, the importance of PV as an energy source will be further strengthened. One essential key for price reduction
of solar modules is quality inspection, both on the lab scale (quality analysis; mainly to increase the efficiency of solar cells and
modules) as well as inline in the factory (quality control; mainly to increase the yield of production). Solar modules have to be
a mass product in order to contribute considerably to a “renewable energy future” and hundreds or thousands of solar modules
(each with a size of about 2m2) are assembled into PV parks. This number of modules is necessary in order to collect enough
sunlight for producing electricity in a significant amount (e.g., replacing a conventional power plant). Accordingly, imaging
methods, allowing a fast assessment of solar cells, modules or even PV parks, are of special interests for a further commercial
success story of PV.

Commonly used imaging methods for quality inspection of solar cells and modules4 are based on infrared measurements5–8,
luminescence imaging9–12 and optical inspection such as in the visible or NIR range or even combination of different imaging
methods13–20. For quality control, all imaging methods need to be fast as cell production has generally a throughput of at least
one cell per second. Manufacturers aim for higher throughputs to further reduce the production costs per cell and those are too
high for a manual quality control. Instead, a fully automatized evaluation of the images is desirable. Different subtasks during
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the evaluation are necessary such as the automatized detection of the cell edges and registration 21, 22, automated detection of
rear contact voids23 or automated assessment of the overall cell or module quality24, 25.

One important possible fault during production are cracks26–28, for example induced by mechanical force when handling
the solar cells or modules. A fast way of detecting such cracks on the cell or module is given by electroluminescence (EL)
imaging. Accordingly, several algorithms have been proposed for an automatized segmentation of cracks in EL images. Jean
and co-workers29 proposed an approach on several tools, including a thresholding tool and a binary large object (BLOB)
tool. A major disadvantage of their approach is that a differentiation between cracks and other defects in the EL images
is difficult. Similar results are true for the study of Lin et al.30. More promising results were reported by Tsai et al.31 by
using a self-referencing scheme based on Fourier image reconstruction. However, the study did not state the minimum crack
size that can be identified with this approach. Sparatu et al.32 applied 2D matched filters, which were taken from intensity
profiles of cracks in EL images. They reported a crack detection rate of 90 %, with an elongation of the cracks of at least 3cm.
Unfortunately, the study did not mention the runtime of the algorithm or a measurement of over-rejection. Using an anisotropic
diffusion filter, Anwar and Abdullah33 were able to enhance cracks in EL images. The cracks could be segmented more easily
and good detection rates were obtained by a successive shape classification. The runtime was unfortunately rather high with
4.1s for a 1178×1178px image.

In summary, the correct classification of small cracks is a serious issue, especially for multicrystalline cells, where normal
crystallographic defects may be incorrectly classified as crack by segmentation algorithms. To this point, there is no reference
algorithm publicly available and existing software such as dataArtist34 do not yet provide definite results. In addition, a
comparison of developed algorithms to industrial systems or products is hardly possible as the underlying algorithms and
resulting metrics are kept secret.

The aim of this work is to overcome this issue and to propose a reference segmentation algorithm for crack detection in EL
images of solar cells. To do so, we tested an algorithm proposed by Frangi et al., which is very commonly used in medical
imaging to detect blood vessels. We adapted the algorithm to fit it to the needs of crack segmentation in EL images of solar
cells. We thoroughly describe the algorithm and publish the code online. We hope that this will help the scientific community
to better assess different segmentation algorithms and, accordingly, will help to improve automated detection of cracks in EL
images of solar cells.

2 Materials & Methods
2.1 Samples and Preprocessing
The samples were standard multicrystalline solar modules measured at the same electric current. Fig. 1 shows an unprocessed
EL image, where the orange arrow points to a crack. An image contains a region slightly bigger than one single cell. In total,
47 images with a resolution of 1024×1024px were selected for a detailed analysis. Here, 7 images show no defects and 40
images show cracks with different elongations and orientations. All images show commercially produced cells, and hence, the
database does not include artificial induced cracks. Crack sizes range from about 20mm to cracks covering the entire length
of the cell. Smaller cracks (< 20mm) are often rather difficult to clearly differentiate from non-crack structures and were
accordingly not part of this study. The cracks were manually labeled by an expert for further evaluations and the labels were
stored as binary masks.

To evaluate the algorithm for lower input resolutions, the experiments were also performed on downsized versions of the
originals. In addition to measurements with the original image size, the influence on the algorithm’s accuracy when downscaling
(bilinear interpolation) by a factor of 0.75 (768×768px) and 0.5 (512×512px) was tested.

The appearance of such EL images can negatively affect the accuracy of the final crack detection algorithm. To enhance the
quality of the results, the images were preprocessed by applying three subsequent steps, which are described in the following.

Fourier-Filtering was used to reduce the influence of gridlines in the EL images. Gridlines appear as a sinusoidal wave
along the vertical axis of the image (Fig. 1, red box) and setting certain frequencies in the Fourier domain to zero diminishes
the small intensity changes. Without smoothing the gridlines, a subsequent crack segmentation can have an increased number
of false positives (FP) because even small intensity changes can lead to a response in non-crack regions of the image.

Next, the borders of the cell (Fig. 1, green box) and the busbars (Fig. 1, blue arrows) were detected by binarizing the image
and applying morphological filters35 with vertical and horizontal line structuring elements of a certain thickness. Here, the
structuring elements’ kernels were determined empirically. Selecting this region of interest is necessary, because cracks outside
the cell must not be considered. Furthermore, the busbars have a crack-like structure in the image and algorithms might mark
them as cracks.

As all images of the underlying database use only about half of the 8-bit grayscale-range, histogram equalization was
applied to stretch out the intensity range36. This step can be ignored, if the images use the entire grayscale. Finally, a Bilateral
filter37 was used to decrease noise and smooth rather homogeneous areas while simultaneously preserving edges.
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Figure 1. EL Image of a multicrystalline silicon solar cell with crack. The crack is denoted in orange. The blue arrows point
to the busbars while the greenish box marks the border of the cell to be inspected. The red box shows a zoom of the crack area
highlighting the sinusoidal gridline intensities changing from gray to black in the vertical direction.

All methods have in common that they are computationally inexpensive, which is an important requirement for real time
processing on a conveyor belt.

2.2 Crack Segmentation
Nowadays, machine-learning algorithms achieve high accuracies in image-based defect detection. However, these algorithms
are “data-hungry” which means that the training database must contain a large number of corrupted as well as uncorrupted
images. Because this is usually never the case at the start of production, and manual labeling is also very time-consuming, an
unsupervised crack segmentation algorithm can be applied to highlight cracks and crack-like structures. The images segmented
by these unsupervised algorithms help to drastically lower the amount of manual labeling work and thus allow to set up a
database more quickly.

In comparison to monocrystalline silicon solar cells, crack segmentation is especially challenging for multicrystalline cells.
The grainy structure can lead to a high false positive rate, especially when using methods that do not take the crack’s shape into
account. An example for such an algorithm is Otsu’s thresholding38, as well as other techniques, where a global threshold
value is used for segmentation. Therefore, taking the image intensities as well as the shape of the object into account can be
advantageous.

2.2.1 Vesselness Filtering
A method, commonly used in medical imaging for Vessel segmentation is vesselness filtering39. The main goal of this technique
is to highlight vessels which appear like tubular structures in images. Since the human vasculature has different thicknesses, it
is essential to introduce multiscale measurement with certain scales. Cracks show the same tubular appearance in EL images,
however, their thickness varies much less compared to vessels. The Vesselness algorithm utilizes the eigenvalues of an input
image’s Hessian Matrix H to calculate a probability map for vessels and background. As higher order derivatives are highly
sensitive to noise, the components of H are Gaussian blurred with a certain scale σ . The Gaussian second order derivative in
x-direction at pixel p can be computed by:

δ 2

δx2 IG(p,σ) =
δ

δx2 G(σ)∗ I(p), (1)
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where I is the input image and G(σ) is an isotropic two-dimensional Gaussian distribution function:

G(p,σ) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
(2)

The Hessian Matrix of I is then calculated by

H(p,σ) =

[
δ 2

δx2 IG(p,σ) δ 2

δxδy IG(p,σ)
δ 2

δyδx IG(p,σ) δ 2

δy2 IG(p,σ)

]
(3)

Next, the eigenvalues λ1,λ2 (|λ1|< |λ2|) of H are calculated by applying singular value decomposition. Considering an image
where cracks appear as dark tubular structures on a bright background, both eigenvalues should be greater than zero in case
of a crack. When a pixel lies in a crack region, λ1 is a small value (ideally zero) whereas λ2 is large. From the eigenvalues,
the “blobness measure” RB = |λ1| · |λ2|−1 is calculated to differentiate vessels from blob-like structures. The “second order

structureness” S =
√

λ 2
1 +λ 2

2 yields information about the contrast between cracks and their environment, where the result is
close to zero if no structure exists in the background. On the other hand, this measure will be larger in case of a crack because
λ2 will have a high magnitude.

Next, a crack probability for each pixel p and σ is calculated by

V (p,σ) =

{
0, if λ1 ≈ 0

exp
(
− R2

B
2β 2

)(
1− exp

(
− S2

2c2

))
, if λ1 > 0

, (4)

where β and c denote constant parameters controlling the algorithms sensitivity. The resulting probability map shows values
close to ‘1’ where a crack is located and small values in background areas with low response.

Finally, V (p,σ) is calculated for multiple scales σmin, ...,σmax and the maximum probability over all scales is considered as
the final output according to:

Vres(p) = max
σmin<σ<σmax

V (σ). (5)

To binarize the resulting probability map, global thresholding with a value t is applied splitting the image into crack and
background.

2.2.2 Enhanced Crack Segmentation (eCS)
We proposed an adaption of the Vesselness filter algorithm used to segment pages of a scanned historical book within X-ray
volumes40 which can be also utilized for crack segmentation. The original Vesselness algorithm was developed to segment
vessels having randomly curved structures with changing diameters. However, when investigating cracks, their shape can be
described by an elongated, thin, rather long tubular structure. To take this into account, the isotropic scale of the Gaussian
distribution G(x,y;σ) can be adapted to better fit the cracks’ appearance by introducing an anisotropic scale. The anisotropic
2D Gaussian distribution is calculated by

Ga(p;σx,σy) =
1

2πσxσy
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
x2

σ2
x
+

y2

σ2
y
− 2ρxy

σxσy

])
, (6)

with ρ denoting the correlation of σx and σy. For simplification, we consider only distributions that are aligned with the x- and
y-axes such that σx and σy become uncorrelated with ρ = 0. As a result, Eq. 6 reduces to

Ga(p;σx,σy) =
1

2πσxσy
exp

(
− x2

2σ2
x
− y2

2σ2
y

)
. (7)

Next, we define a degree of asymmetry n specifying the factor of anisotropy between σx and σy of the Gaussian filter, where
σx = n ·σy (n ≥ 1) focuses on cracks elongated in horizontal direction, and σy = n ·σx (n ≥ 1) highlights vertical cracks.
Inserting this into Eq. 7 yields to

Gax(p;n,σx) =
1

2πnσ2
x

exp
(
−n2x2 + y2

2n2σ2
x

)
(8)
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Figure 2. ROC curves and the respective AUC results for the evaluated algorithms. Global thresholding performs badly
compared to the Vesselness approaches. eCS1.5 shows the best ROC curve and achieves the highest AUC score.

for horizontal cracks, whereas the vertical crack enhanced version is calculated by

Gay(p;n,σy) =
1

2πnσ2
y

exp

(
−x2 +n2y2

2n2σ2
y

)
. (9)

If n = 1, the asymmetry vanishes and the adapted Vesselness result will become identical to the original Vesselness filter. As
the crack thicknesses are the same for both directions, we set σx = σy = σa.

In total, the proposed algorithm is controlled by five parameters: β , c, σa, n, and t. In summary, the adapted algorithm with
the introduced degree of asymmetry (eCS) should enhance the segmentation of crack parts which are horizontally and vertically
elongated.

3 Results
For evaluating the the proposed eCS segmentation algorithm, a comparison with two other approaches was performed: Global
thresholding and original Vesselness filtering with σ = (1,2) (Frangi12). For the eCS algorithm, the variable parameters were
optimized by a grid search aiming for a small number of false positives (FP) and a high number of true positives (TP) leading to
β = 0.5, c = 0.05, n = 1.5, σa = 2.0 and t = 0.9 for all eCS algorithms. For this, a test set of 40 images and a validation set of
7 images was used (randomly assigned; both sets containing crack and non-crack images) and the FP and TN were averaged
over all results. In addition, the algorithm was tested with n = 2.0 (eCS2) and n = 2.5 (eCS2.5). As the anisotropic character of
the eCS algorithms can lead to decreased segmentation results for diagonal crack structures, we also tested the algorithms for a
45◦ rotated version of the image. Due to that grid fingers are horizontally and bus bars vertically aligned, this adaption can
also reduce false positives through those structures. To evaluate the algorithms, we use the receiver operating characteristic
(ROC) curve which shows the true positive rate (TPR) and false positive rate (FPR) for different discrimination thresholds.
Furthermore, the Area Under Curve (AUC), an accuracy measurement for segmentation algorithms, was calculated. Higher
AUC values indicate better results where an AUC of 1 is an optimal result and 0.5 is comparable with a random guess. To
retrieve more insights on the performance of the algorithms’ results, the precision, recall and accuracy (ACC) are calculated by
averaging over the entire database.

We highlight the main results in the following. According to Fig. 2, Global thresholding shows the lowest AUC of 0.2266.
This approach ensures that most of the crack pixels are segmented as such, but the false positive rate is dramatically large. This
is in agreement with previous results from other groups29, 30. A discrepancy between large TPR and low FPR is seen for most
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(a) Original EL image (b) Otsu (c) Frangi12 – t = 0.7 (d) eCS1.5 – t = 0.9

(e) eCS2.5 – t = 0.9 (f) eCS2 – t = 0.9 (g) eCS1.5_45◦ – t = 0.9 (h) eCS1.5_50% – t = 0.9

Figure 3. Original EL image and the segmented results. Green indicates correctly segmented crack pixels (TP), orange not
segmented crack pixels (false negatives) and red incorrectly segmented background (FP). Although Otsu has the highest TP
score, it can not handle shaded areas resulting in high FP. Frangi12 improves the FP, but shows decreased TP. eCS1.5 further
decreases the FP while keeping the TP at the same level. Increasing the degree-of-asymmetry results in higher TP and FP.
Rotating the standard image by 45◦’s results in decreased TP and FP while downscaling the image by a factor of two increases
the TP and FP related to the total number of image pixels.

algorithms and is common to most segmentation problems. However, this degree of discrepancy is rather striking in the case of
crack segmentation in EL images, mainly due to the multicrystalline structures. All four other algorithms show drastically
better results than Global thresholding. eCS1.5 achieved the best AUC (0.9114) compared to Frangi12 (0.9094) and all other
eCS versions. The curves in Fig. 2 strengthen this observation, where it can be seen that eCS1.5 achieves the best TPR to FPR
ratio. The runtime of Global thresholding was the fastest (0.005s) and eCS2.5 the slowest (0.668s) , however, all methods took
less than a second on a standard laptop CPU (Intel(R) Core(TM) i7-6700K, 32 GByte DDR4 RAM). As a remark, the runtime
of the preprocessing steps was 0.6s. Further runtime optimization can be done by processing the data in parallel on a GPU.

Next, the segmentation results of a randomly chosen crack image shown in Fig. 3(a) were visually inspected with a threshold
t determined by the ROC analysis. Within the results, red regions denote pixels wrongly segmented as crack (FP), green regions
denote correctly segmented cracks (TP) and orange areas missed crack pixels (false negatives; FN) whereas the numbers on
top of the images correspond to the total pixel count for those regions. One can conclude, that Global thresholding (here,
Otsu’s method) (Fig. 3(b)) is useless, as it is not capable of handling shaded areas and thus has a very high FP count. Standard
Vesselness filtering (Fig. 3(c)) reduces the FP while still segmenting the crack. eCS2 (Fig. 3(e)) further reduces the FP and
increases the TP, while eCS1.5 (Fig. 3(d)) shows a very low FP count. eCS2.5 (Fig. 3(e)) has the highest TP count but also the
FP increased. Neglecting Otsu’s algorithm, eCS1.5 outperforms the other algorithms with respect to the pixel counts for false
positives while keeping the TP at the same level as Frangi12. Rotating the image by 45◦ shows the lowest FP and TP count and
the highest FN count. Downsizing the image to half of the image size increases the number of TP but also the FP related to the
total number of image pixels. The visual outputs furthermore correlate to the quantitative results from the ROC curve (Fig. 2).

Table 1 shows the evaluation metrics for eCS1.5 compared to Frangi12. The results were averaged over the entire database.
The first two rows show results for 45◦ rotated images. The next two rows show the metrics for the standard input images. The
last four rows show results for downscaled (factor 0.75 and 0.5), non-rotated images. This reduces the runtime for a single
image by about a factor of two and four, respectively, compared to the standard image size. The best precision and accuracy
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Table 1. The evaluation metrics of the proposed eCS1.5 algorithm compared to Frangi12 for different settings.

Precision Recall ACC AUC Runtime [s]

eCS1.5_45◦ 0.287 0.345 0.997 0.9103 1.11
Frangi12_45◦ 0.210 0.410 0.996 0.9089 1.10
eCS1.5 0.245 0.436 0.996 0.9114 1.10
Frangi12 0.181 0.436 0.995 0.9094 1.09
eCS1.5_75% 0.166 0.478 0.995 0.8847 0.58
Frangi12_75% 0.125 0.489 0.992 0.8826 0.57
eCS1.5_50% 0.187 0.434 0.992 0.8402 0.25
Frangi12_50% 0.137 0.468 0.989 0.8400 0.25

(ACC) is achieved by a 45◦ image rotation. The best AUC is achieved by eCS1.5 whereas Frangi12 downsized by a factor
0.75 shows the best recall measure. It can be seen, that downsizing the image by 25% halves the runtime for a single image,
however, also the accuracy gets slightly worse.

4 Discussion
Not surprisingly, global thresholding was not successful as a crack segmentation algorithm for EL images of multicrystalline
cells. Many other dark areas besides cracks result in a large false positive rate. The standard Vesselness algorithm shows a
significant improvement with an AUC of 0.9094. The eCS algorithms further increased the AUC up to 0.9114, where eCS1.5
achieved the best results with a very low count of false positives. The dramatic increase compared to Otsu’s can be explained
by the included shape information of cracks. As a remark, the presented values in this paper depend on the selected input
parameters of the algorithms and the EL images. We believe that the results are representative as we did an initial grid search to
evaluate the influence of the input parameters and the given mean values are derived from 47 typical images including also
non-crack images.

As a further remark we want to mention that the proposed eCS algorithm works best for rather vertical or horizontal cracks,
if the degree-of-asymmetry increases. In reality, most diagonal cracks consists also of more vertical or more horizontal parts,
which will be detected better with our adapted algorithm. A rotation of the image by 45◦ showed a decreased number of TP,
however, the FP were also decreased. The decrease of FP can be explained by the fact that grid fingers are horizontally aligned
and by rotating the image, artifacts introduced by those structures are decreased.

The runtimes for the Vesselness algorithms are all below 700ms (excluding pre-processing taking 0.6s) which is acceptable
for inline characterization of solar cells, but an improvement of the runtime by using GPU’s is desired. Downsizing the image
improved the runtime, however, the accuracy slightly dropped. When using the algorithm in a production environment, one has
to trade-off runtime vs. accuracy and also take a look at the influence on a following crack classification or quantification step.

Additional post-processing steps of the segmented images (e.g., outlier removal or morphological filtering) should further
improve segmentation results. However, a final classification step, able to handle small outliers, is most likely required in any
case. Here, eCS would show again its strength as it strongly reduces the number of false positive objects (c.f., Fig. 3) making a
final classification more straightforward than the other algorithms. The ratio of correctly segmented crack pixels (indicated by
green in Fig. 3) and falsely segmented cracks (indicated by red) may give a better impression: for local thresholding this ratio is
0.03, for standard Vesselness it is 0.58 and for eCS1.5 it is 0.83.

The resulting segmentation can build the basis for crack detection or quantification steps. By applying the proposed
algorithm, the initial image information gets significantly reduced to a small subset of pixels that have to be classified to be
crack or no crack. This could be solved by using methods like counting pixel areas (e.g., crack if area ≥ 25px) or classification
by applying recent machine-learning techniques41 where the results of this work can be used as feature maps.

It has to be mentioned, that adjusting the focus correctly is important for the segmentation algorithm. If defocussed, images
become more blurry resulting in lower contrast. For the case of EL-cracks, this means, less pronounced or deep “valeys’ in
the images, which makes crack segmentation more difficult. The effect of defocussing may be counterbalanced to a certain
degree by a threshold parameter. However, appropriate adjustment is an essential part of successful segmentation of cracks.
This is rather easy to realize for inline imaging (due to the fixed position of camera and samples) but much more challenging
for outdoor-EL images.
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5 Conclusion
The Vesselness algorithm, a well known reference algorithm in medical image segmentation, was used for the first time for
crack segmentation in EL images of polycrystalline solar cells. This algorithm has the advantage of having only few parameters
(which may partly be derived from the image data), which has facilitated the success and the spread of the algorithm. We
minimally adapted the Vesselness algorithm to better suit it to the requirements as a crack segmentation filter in EL images.
As a sidemark, our adaption should also give good results in other types of images as well. This should be true as long as the
inspected cracks show an “extended elongation”, i.e., the parts of the cracks resemble more lines than curves.

Furthermore, no reference algorithm has yet been set for crack segmentation in EL images. This has hampered an easy
comparison of crack segmentation algorithms and, accordingly, the improvement of unsupervised crack detection. In summary,
we propose the enhanced crack segmentation (eCS) as a reference algorithm. To do so, we thoroughly described the algorithm
in this paper and published the code at https://www5.cs.fau.de/en/our-team/stromer-daniel/photovoltaics/ so that it is accessible
to the scientific community.
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